Introduction
The purpose of this report is to present AMI-Net, a Deep Learning model to detect brain regions
affected by a stroke given medical imaging (mCTA) scans. We will outline AMI-Net’s
development, results on real data, limitations, future work and current capability to meet
functional requirements outlined by our client, Andromeda Medical Imaging (AMI) Inc.

Background:
Strokes: Strokes are a leading cause of disability and the 3™ most common cause of death

amongst developed countries [1]. During a stroke, a blood vessel that delivers oxygen and
nutrients to the brain is blocked by a blood clot, causing parts of the patient’s brain to be
damaged or die. This results in a loss of motor and neural function, along with premature aging.
Importance of Imaging: Neurologists rely on medical imaging to find tissues affected by stroke.
During diagnosis, these tissues are categorized as either penumbral (affected but not yet dead)
or core (already dead). The more penumbral (saveable) tissue there is, the more likely it is that a
surgical procedure would be worth performing at the risk of surrounding living tissue.

Existing Solutions: There are four common medical imaging techniques [1]. (1) Manual
Diagnosis from CT imaging, while standard, is challenging for general physicians to interpret.
(2) Contrast enhanced single phase CTA (sCTA) can show vessel blockages, but it cannot
determine if the brain tissue supplied by that vessel is still alive and functioning (if it is viable) or
if it has already been damaged due to a lack of blood supply. (3) Multiphase CT angiography
(mCTA) lacks tissue viability and is hard to interpret. (4) CT perfusion (CTP) assesses tissue
viability, but is time-consuming, resource-intensive, and costly.

Motivation: Large medical centers can use expert stroke neurologists and advanced imaging like
CTP. We aim to identify penumbral tissue volumes using a fast, automated method that is more
accessible to rural areas, which may lack advanced equipment and sufficient expertise.

Problem Statement:

Our client, Andromeda Medical Imaging (AMI) Inc, has taken their first step towards addressing
this issue with the Simple Perfusion Reconstruction Algorithm (SPIRAL) [1]. This provides
perfusion imaging from an mCTA scan, highlighting affected tissue areas (see Figure 1).
However, the resulting image is still too coarse-grained for precise clot detection. We propose
AMI-Net, a Deep Learning (DL) model to automate precise detection of affected brain regions
from the raw mCTA scans or generated SPIRAL images. Our final solution must meet the
following requirements, motivated by our client meetings:

Table 1: Our requirements, objectives and constraints, as informed by our client meeting.

Functional |(1) Must accept input data in the form of raw mCTA scans or generated SPIRAL images
Requirements] (2) Must determine zero or more of the 15 categorical sites as regions affected by clot.

(1) Should identify affected brain regions more accurately than AMI’s SPIRAL technique.
Objectives |(2) Should identify the stroke site in a short amount of time.
(3) Should have a low memory footprint.

(1) Must run in under 5 minutes for a single patient.

Constraints (2) Must be able to run on a single CPU (use less than 8§GB RAM)

Data
Overview of Dataset: Our dataset consists of 127 folders, one for each patient. In each folder,

there are 3 raw mCTA scans (2 of which are image-aligned and thus usable as input to ML
models), a clot location file, a SPIRAL map, and an ATLASMASK file. Each of these files were

in .NII (nifty) format, were 512x512 pixels in dimension, and varied in depth (usually around
200 layers) across patients. We only consider the first image-aligned mCTA scan.

Key features: The raw mCTA scans are taken at the hospital and consist of stacks of 2D images
of the brain at different depths. The clot location file indicates the pixel locations of the clot
boundary. Each number in the 3d array is either 0, 1, or 2. For our purposes, 0 indicates pixels
not affected, and 1, 2 are both treated as affected pixels. The ATLASMASK matrix represents
the coverage of the different regions of the brain, and is patient-specific. Logically, each number
is between 0 and 14, inclusive. The SPIRAL map is similar in structure to raw CTA scans. Each
pixel value is within the range [0, 1], and represents the probability that it corresponds to
damaged tissue (0 = healthy tissue, 1 = damaged tissue). The 4 files are visualized in Figure 1.
Further visualization of each file for a single patient is conducted in Appendix Al.

Label generation: Each label is a 15-element binary vector, each index corresponding to one of
15 ATLAS brain segments. The value at each index is either 0 or 1, representing whether a clot is
present in that region. To construct the label for a given image, we first identified where the clot
was by looking at the locations of non-zero values in the clot file, and then identified what
ATLAS map regions those locations mapped to in the corresponding ATLAS file.

Data cleaning methods: The input to our ML model - either raw CTA scans or SPIRAL maps
were already aligned and similar in distribution (raw scan pixels between -1000 and 2000
approximately, SPIRAL map pixels between 0 and 1). To convert each patient’s data to a format
we could input to a model running on a single CPU, we decided to split the data in each file
across the depth axis to obtain a set of ~257 individual 2D slices. This allowed us to avoid
otherwise imminent CUDA Out Of Memory errors. To make training efficient, we further save
each of these frames as 2D tensors (.pt file) offline, allowing us to load the data directly from
storage rather than converting them from .nii to .pt online (i.e. during training). Notably, the
ATLAS mask is aligned with the clot file; thus, label generation is straightforward, as we simply
extract the union of brain regions that spatially (pixel-wise) correspond to clot locations. Finally,
our data exploration showed that clot files are very sparse (only a few frames per patient actually
have a clot pixel). For our deep learning approaches, we address this class imbalance in our
objective function by weighting the loss term of clot pixels more than the loss term of non-clot
pixels. This is crucial as the classifier can otherwise just predict no brain regions are affected for
each frame, and get a high accuracy. Details are discussed in our Methodology section.

(a) Raw CTA scan samples (b) ATLAS Map of Brain Regions [0-14]

(c) SPIRAL output - each pixel in [0,1] (d) Blood Clot - each pixel in [0,2]

Figure 1: Visualizations of the raw CTA scan, ATLAS map, SPIRAL output, and Blood Clot data
for 2 frames. The frame on the right does not have any affected regions, but the left frame does.

Methods:

The clot location prediction problem is a multilabel classification task. Recent review
papers [2,3] have highlighted the applicability of both traditional machine learning (ML)
approaches (i.e. SVM, Random Forest), and deep learning methods like Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs) to brain stroke detection from CT scans.
Notably, findings from [2] emphasize the efficiency of deep learning techniques in aiding
clinicians due to their ability to automatically extract relevant features. In contrast, traditional
ML methods often need the expertise of domain experts to hand-craft features, a process that is
not only time consuming but also prone to errors [2]. Building on recent literature that have
successfully employed CNN-based approaches for ischemic (blood-clot) stroke detection in CT
and CTP scans [2], we wish to assess the efficacy of CNNs in this domain. Moreover, the works
of [4] and [5] highlight the widespread adoption of ViT in medical imaging-based classification
tasks. Thus, we wish to evaluate state-of-the-art (SOTA) CNN and ViT architectures, namely
MobileNet and EfficientFormer, respectively. Architecture for these models are visualized in
Appendix A3. We will compare these approaches to a baseline CNN and a non-neural approach.

The implementation of our deep learning based methods is done in PyTorch. In order to load
the .NII format files into tensors, we utilized the Nibabel Python package [6]. Model training was
done on a NVIDIA 3090 GPU with 24 GB VRAM, which allows us to use large batch sizes and
parallelize model training with the RayTune hyperparameter tuning library.

In our analysis of each method, we will report the precision, recall, accuracy and F1 score
after hyperparameter tuning. To determine the best hyperparameter setting for each method, as
well as the best method overall, we will use the F1 score. The F1 score is the harmonic mean of
precision and recall; it suits our task as it aims to minimize both false positives (avoiding
unnecessary surgery) and false negatives (not operating brain regions that require surgery).

1. SPIRAL Baseline, a Non-Neural Approach
In order to evaluate the success of our ML-based

approaches, we implement a baseline that predicts
clot locations directly from SPIRAL outputs
provided by AML. In this approach, for every
frame, we identify affected pixels as those with pr—— T
values greater than some specified threshold Frame more ey penumbra
(recall that larger SPIRAL values mean higher
probability of damaged tissue). From the blood
clot pixels, we can extract the brain regions (our Figure 2: Pixels that represent blood clof regions are
final prediction) using the reference directly identified from the SPIRAL map
ATLASMASK. This association could be done

easily because both the blood clot files and ATLASMASK had the same dimensions and are
aligned. Thus, if a pixel corresponding to an affected brain region was located at index (X,y) in

the SPIRAL map, the value at index (x,y) of the ATLASMASK would represent the brain region
that this pixel belonged to. This method is visualized in Figure 2.

Using
Threshold

ATLAS Map

ATLAS
0.0.0.0.0.0.0.0.0]

[0.0.1.1.1. 0.

Hyperparameter Tuning: We split data into distinct train and test sets (80-20 split). We determine
the optimal threshold by assessing performance on the train set, and evaluate performance by
reporting metrics on the test set using this threshold.

Hyperparameter tuning results:
Table 2: Precision, Recall, F1 Score and Accuracy on various thresholds on the train set

Threshold Precision Recall Accuracy F1 Score
0.0 0.1577 0.7089 0.2139 0.2579
0.7 0.1659 0.6507 0.3023 0.2644
0.8 0.1879 0.5445 0.4587 0.2794
0.9 0.3344 0.3596 0.7389 0.3465

0.95 0.5443 0.1473 0.8119 0.2318

We found that the baseline had the best performance at a threshold value of 0.9, obtaining an F1
Score of 0.347. The benefit of this method is that it is guaranteed to satistfy our hardware
constraints (< 8 GB RAM) and can perform inference on all slices for a single patient in the least
amount of time. The F1 score on the test set is 0.3358, and full results are in Appendix A2a.

2. CNN Baseline
We implement a 4-layer CNN architecture proposed in literature regarding COVID-19
prediction from CT scans [7], shown in Figure 3. We experiment with using either raw CT scans
or SPIRAL images as input. The model is applied to

each frame from the depth dimension of the SPIRAL Loy No. of Foraely Kerner Tioe _Selivion
input. These 2D slices are 512 by 512 pixels by default Ao 2 313 s
but as discussed in the hyperparameter tuning section, PR 32 53 Relu
we experiment with different input resizing dimensions. | fult Commected o i Propout (929
The softmax output has a dimension of 15 SoftMiax = = -

Figure 3: Baseline Convolution Neural Network Architecture

corresponding to each of the 15 brain region classes.

Hyperparameter Tuning: For all trials, we kept the train-val-test ratio at 64:16:20, the optimizer
as Adam, and the loss function as binary cross entropy for multi-label classification. We kept the
epochs for each trial at 40, as empirically we found this is enough to reach convergence for all
tested hyperparameter settings. The tunable hyperparameters include the activation function
(ReLU, sigmoid, tanh), dropout ratio (0.1 to 0.4), embedding size after convolution layers (128,
256, 512), pooling size (2x2, 4x4), class weights of clot vs non-clot regions (10-90 for clot
regions), learning rate (0.0005 to 0.01), number of extra layers in the fully connected region (0 to
2), and the input image size (128x128, 256x256, 512x512). The batch size was kept at 32 for all
experiments.

Explanation of class weights: This hyperparameter helps us address class imbalance in our
dataset by adjusting the importance of each class in our loss function. Higher weights are
assigned to the underrepresented class (in our case, this is the positive class as the proportion of
pixels that correspond to a blood clot in any given image is tiny compared to non-clot pixels), so
that the model can pay more attention to it and make better predictions for it.

Hyperparameter tuning results: The results using both SPIRAL and raw CTA scans are shown
below. The optimal hyperparameters for best F1 score using each data input type are the values
in the columns with green cells. After heavy tuning, using raw CTA scans as input gives a higher
F1 score, indicating that using generated SPIRAL maps may result in a loss of information for
downstream tasks. Full results are in Appendix A2b and A2c.

Table 3: Sample hyperparameter tuning runs using SPIRAL and raw CTA scans
IHyperparameter Sample SPIRAL HParam Settings Sample CTA HParam Settings
Ipool dim 4 4 4 4

feat dim 512 512 512 512

lactivation tanh relu tanh tanh
[learning rate 0.0013 0.00061 0.0011 0.0009
[dropout prob 0.32 0.39 0.25 0.27
Ipos weight 17.72 15.26 12.91 15.65
extra layers 0 2 2 2
Iresize_dims 128x128 128x128 256x256 128x128
literations 8 20 20 20
ftotal time (s) 79.80 106.68 325.90 132.72
Val F1 0.33 0.60 0.62 0.67
Val Precision 0.20 0.46 0.51 0.51
Val Recall 0.91 0.86 0.78 0.95
[Val Accuracy 0.96 0.99 0.99 0.99

Further Training: After selecting the
hyperparameters that give the highest F1 score on

aa

our validation set, we retrained the model for . oSV Y
more epochs (40). The accuracy, precision, recall > ﬁ v v Tk || \ as .f-.-"*"'“".-'\d"'ﬁﬂ y
and F1 score over time are shown in Figure 4. q oo 'In| |.' lﬁ'l -' o . qlln?.' v
These graphs match our expectations of multilabel b | Rl

classification of tiny blood clots - we achieve high 7 o Y o &
recall early on as each frame has very few affected Epacts Epects
brain regions. We also get high accuracy as most Mol
regions will be unaffected within a single frame;

so we can get a good accuracy just by outputting |
no region. Precision and F1 score, which capture ANY y
how well we do in outputting affected regions take e & T B &
longer to converge. This is because the model et et

must actually learn to minimize a possibly large Figure 4: Evaluation metrics for CNN baseline
amount of false positives while keeping the with optimal hyperparameters throughout training
usually zero or one affected region.

Vi M
| I| Il-'l 0a{ VWY

| ,ll . ||'|‘-\.ﬂ N

N

B
-

Recalls
=
m

Precision
=

=
=

3. More Complex Deep Learning Architectures
We now aim to investigate more complex architectures, specifically MobileNetV2 and

EfficientFormer. Since these models have a large number of parameters, training on our data
alone may result in overfitting; we thus implement a transfer learning approach, whereby we take
a frozen pretrained model (trained on ImageNet classification) and replace the final layer with a
newly initialized one. We train the model for 5 epochs and then unfreeze a/l model weights.
Subsequently, we fine-tune the model with a lower learning rate than before and train for 40
more epochs.

3a. MobileNetV2

We wish to investigate how much performance boost a more complex CNN architecture gives.
The MobileNetV2 architecture is a CNN-based model that is SOTA amongst lightweight image
classification models [8]. As such, it is commonly used in edge inference settings such as mobile
devices, which makes it a suitable candidate for our exploration due to our compute constraints.

Hyperparameter Tuning: There is less architectural hyperparameter tuning involved as we are
using a pretrained model. Following our earlier results, we experiment with CTA inputs only.

Input images are resized to 224 x 224 as that is the default size for this model. We tune the
learning rate (0.0005 to 0.01) and class weights (10-90).

Hyperparameter tuning results:

The MobileNetV2 performs well in all metrics, with low learning rates and a positive class
weight of ~15. The optimal hyperparameters are indicated by the green row.

Table 4: Sample hyperparameter tuning runs using raw CTA scans

Pos class |Epochs] Total |F1 on val]Precision on | Recall on | Accuracy on
Ir (¥10e-4) | weight time (s) set val set val set val set

6.74 12.72 20 |589.63 | 0.7700 0.6504 0.9435 0.9936
7.01 15.59 20]580.24 | 0.7899 0.6790 0.9555 0.9946
10.17 14.16 20 |583.94| 0.7315 0.6179 0.8963 0.9439
32.74 16.45 20 |586.57 | 0.6930 0.5854 0.8492 0.9439
33.25 17.02 20 |596.54 | 0.5390 0.4553 0.6605 0.8942

Further Training
As in the CNN baseline, we train the optimal model for 20 more epochs. The general patterns

remain the same; we get very good accuracy and recall after just a few epochs, but precision and
F1 score take more epochs to converge and don’t converge to a value near 1. We also note a
jump in performance as soon as fine-tuning begins at epoch 5. The final F1 and precision are
better than their respective scores on the CNN baseline, which suggests that the vast knowledge
stored in the pretrained model is useful for learning general features for image classification, and
steering the model by fine tuning it to our dataset improves results for our specific task of blood
clot detection.

3b. EfficientFormervV2

We now move frqm CNN to vision N RevTavar v BN ey vve
transformers. Vision transformers have recently | - \ i/ (v
emerged as a very strong computer vision £ 090 {,' 2%/

model that makes use of attention to learn ool 04 I|'

complex features across the entirety of images [. 02+

without being limited to a small receptive field T e ° pochs
in its earlier layers [9]. However, they tend to be 0s AV e
data hungry since they do not have inductive cos] [V L - /

biases like CNNs in the form of translation E . al I|

invariance and locality. Thus, we leverage | 1]

pretrained weights of the EfficientFormerV2 v i —
model [10], which is a lightweight vision ot et
transformer that achieves state of the art Figure 5: Evaluation metrics for MobileNetV? fine
performance on the ImageNet image tuning using optimal hyperparameters during training

classification benchmark.

Hyperparameter Tuning & Results: The hyperparameter tuning experiments follow the same
procedure as outlined for MobileNetV2, whereby learning rate and positive class weight are
tuned. We use CTA frames as input, which are resized to 224 x 224 pixels as required by default
for the pretrained model. The best performing hyperparameters are shown below.

Table 5: Sample hyperparameter tuning runs using raw CTA scans

Ir (*10e-3) 1.3 0.2 1.1 2.8
pos weight 13.54 12.28 16.37 13.67
epochs 20 20 20 20
total time (s) 862.51 859.57 849.99 865.27

Val F1 0.60 0.58 0.48 0.36
Val Precision 0.44 0.42 0.35 0.26
Val Recall 0.95 0.91 0.76 0.57
Val Accuracy 0.99 0.95 0.96 0.97

Further Training: As discussed previously, due
to the nature of the task, accuracy and recall
reach near perfect in a few epochs. However, s || /) o
there are more fluctuations for the first few ol | |
epochs- this can be credited to the large impact -
of initial gradient steps on the randomly
initialized classification layer. The final _ o, .
validation F1 score is between the simple CNN VT A
and fine tuned MobileNetV2, suggesting that Epv "

fine tuning large pretrained models is better than r M

training small models from scratch, but also that R R
frozen weights of a CNN are a better starting
point than frozen weights of a ViT. Overall, the
fluctuations in fine tuning an EfficientFormerV?2
1s more noticeable than fine tuning a CNN. Empirically, this suggests the CNN features are more
suited to clot detection, as the classifier is more confident (less variance) in the weights of the
final classification layer during training.

Figure 6: Evaluation metrics for EfficientFormerV2
[fine tuning using optimal hyperparameters during training

Model Results and Comparisons:
Our final test results, obtained after training models with optimal hyperparameters on more
epochs (40 total) are summarized in the table below.

Table 6. Comparison of the different methods on F'1, Precision and Recall

Approach Best Result
SPIRAL thresholding baseline F1: 34%, Prec: 33%, Rec: 35%
Train a Simple CNN F1:79%, Prec: 73%, Rec: 86%
Fine-tuning MobileNetV?2 as feature extractor F1: 87%, Prec: 82%, Rec: 93%
Fine-tuning EfficientFormerV?2 as feature extractor F1: 84%, Prec: 77%, Rec: 92%

All 3 models outperform the SPIRAL map — brain regions baseline; we have
(empirically) proven that neural methods are better than simple rule-based methods. The order of
our model performances, from best to worst on F1 score is MobileNetV2 Fine-tuning,
EfficientFormerV2 Fine-tuning, Simple CNN, SPIRAL Baseline. Notably, the best model on F1
is also best on Precision and Recall. This is expected as F1 is a holistic metric that ensures we
both identify all regions that need surgery and not identify regions that do not require surgery.
Note that we assume false positives and false negatives are equally as detrimental to the patient.
If AMI decides one is more worrying, our metric can be adjusted by changing the alpha
parameter of F1 to weight either precision or recall more.

It is natural to expect more complex architectures proven to work on medical imaging
tasks will work better than simple CNNs, which will work better than simple rule-based
methods. We speculate that MobileNetV2 outperforms EfficientFormerV2 because of a powerful
pretrained base that captures intricate features that are useful for the downstream task of brain
region classification. On the other hand, while EfficientFormerV2 also has a powerful vision
transformer feature extractor, the fluctuations in the metric graphs suggest the extracted features
are not immediately useful for our task. Thus, MobileNetV?2 as a feature extractor captures the
unique nuances present in brain CT scans more accurately, perhaps because a CNN-based model
captures spatial relations in images and has inductive biases more suited to clot detection (for
example, clot detection should be translation invariant), which are more powerful claims for our
specific task than having an attention mechanism. Indeed, knowing that clots are concentrated in
one region of the image makes CNNs a more intuitive choice due to convolution and pooling
layers dealing with small windows of images. Moreover, clot detection in one region in the
image is independent of clot detection in another region of the image, so attention is not as
useful. Nonetheless, it is important to realize that the performance gap isn’t too significant. In
fact, while our hyperparameter search was very extensive, perhaps further searching the
hypothesis space through hyperparameter tuning could push the results closer to one another. If
our hypothesis that ViT features aren’t as informative is valid, it may simply require more epochs
after unfreezing all model layers.

Note that across all neural methods, the recall is much higher than the precision. This is
because the output is the brain regions covered by a single frame; since the clots are very small,
this is usually a small number of regions, if any. So, it is likely the model will predict the right
region(s), achieving high recall, but will also predict incorrect regions, yielding low precision.

Discussion
Usefulness:

Our client, AMI, has two ultimate goals. The first goal is to output a categorical
segmentation of the occlusion/clot with a relatively high F1 score. The second is to perform
segmentation to show exactly which pixels belong to a clot. Due to the time restriction on the
project, and on recommendation of our client, we have focused our efforts on delivering the best
product to address the first goal alone.

AMI-Net meets the functional requirements of the project - to accept data as raw CTA or
SPIRAL maps, and output zero or more categorical sites of occlusion, corresponding to regions
of the brain served by different cranial blood vessels. All of our objectives are satisfied; as the
union of affected brain regions for each frame defines which of the focused segments of blood
vessels the stroke site is, and this is done while satisfying both constraints on time and memory.
Regarding memory, AMI-Net uses very small compute power during inference - it is able to run
inference on a single CPU (<8 GB RAM). Regarding time, our model performs inference for a
single patient by looping through the ~257 frames and combining the results. The total time for
this is well below 5 minutes; exact times are listed below. We are particularly pleased that the
times are on the order of 10 seconds - since a stroke patient loses 7 million neurons each minute,
it is vital to minimize this time.

Table 7: Time taken for each method to run inference on all 257 frames for a single patient

Model CNN Baseline EfficientFormerV2 Fine MobileNetV2 Fine
Tuning Tuning
Time for 1 Patient 5.92s 6.70s 8.41s

Furthermore, we achieve the primary objective of identifying affected regions of the brain to
a standard acceptable by AMI-Net. The current rule-based approach that is available to AMI
achieves a precision and recall of 33% and 35%, respectively. Our optimal method achieves 82%
and 93% on the same metrics, respectively. Given that our client has instructed us to prioritize a
high F1 score, we deem AMI-Net successful as it completely overwhelms the simple SPIRAL
thresholding baseline (87% vs 34% on F1).

While we do not present AMI-Net as an end-to-end solution to determine which part of the
brain to operate on in a stroke patient, we certainly deem it useful to help neurologists in rural
areas (who reportedly don’t have the same level of expertise as their counterparts in urban areas).
The idea is that for a single patient, in under 10 seconds after obtaining CTA scans, the
neurologist will have a set of recommended brain regions to investigate for clots. The neurologist
then matches our output with the ATLAS map of the patient, and that way knows which regions
of the CTA scan he/she should investigate further for signs of ischemic stroke. Given our
precision and recall scores are both above 80%, and that most patients will only have one blood
clot, our method will almost always give the neurologist an accurate general area to investigate.

Importantly, we present AMI-Net as an assistive tool; that way, we still place responsibility
of misdiagnosis on the neurologist who must identify the best regions to operate in a limited
amount of time. This is done to address the ethics behind medical diagnosis and treatment; a
method that replaces a neurologist with an automated method would present uncertainties about
who is at fault if the model performs poorly.

Limitations:

Our models are trained on a dataset of CT scans from 127 patients, which is not enough to
learn a robust and deployable model. At least a few thousand patients’ worth of data is required
to develop models that can generalize and provide accurate predictions for new patients in a
practical medical setting. It is essential to have data that originates from a large number of
patients to capture the variety of patterns exhibited in ischemic stroke occurrences [1]. This
prevents overfitting, by consequence helping deep neural networks generalize results to new
patient data. Fortunately, our implementation can easily be reused by AMI for training on their
proprietary 1000+ patient datasets with no modification.

Another limitation is that the area of the brain covered by our model output (predicted brain
region(s)) is much larger than the size of a clot. This still leaves general physicians with much
work to do in order to find the exact location of the blood clot. Nevertheless, this limitation can
be addressed by developing a segmentation model that can output a region that is much closer to
the actual size of the blood clot. Such a model will predict whether each pixel is part of the clot.

Effectiveness in comparison to similar products
Two competitors that have been identified include Brainomix [11] and General Electric

Health [12]. Both companies have solutions that can identify the location of Large Vessel
Occlusions (LVO) and hyperdense volumes which may indicate bleeding. Brainomix offers fully
automated and standardized ASPECTS scores and can segment, outline and present its findings
using graphical visualizations [13]. Additionally, General Electric Health has developed a
solution, ColorViz [14], that elaborates the full set of images included in a CT stroke protocol
(NeCT, mCTA) into one single color-coded map called ColorViz [14]. The vessels displayed on
the map appear differently colored based on the arrival time of the contrast medium and on a
per-person adaptive threshold technique [14, 15]. However, it must be noted that the SPIRAL
scans provided by AMI provide information about both Large Vessel Occlusions (LVO) and
Medium Vessel Occlusions [16]. Notably, Medium Vessel Occlusions account for 25%-40% of
Acute Ischemic Stroke (AIS) [17]. The limitation in the scope of solutions offered by both

10

Brainomix and GE Health positions AMI-Net to have a significant advantage over both of its
competitors. The additional precision provided via AMI-Net’s segmentation would help save
time, effort and cost in a clinical setting. Although it must be noted that AMI-Net does not
provide all of these benefits currently due to the limitations discussed earlier, it is on the correct
pathway to achieve these goals given more time and resources are put into its later development
(specifically, the second ultimate goal of precise clot detection).

Implementation

As of yet, AMI has not proceeded with incorporating our proposed methods into their
brain stroke patient diagnosis workflows. Nevertheless, we have taken steps to ensure a smooth
deployment process. Our model inference scripts and trained model files are available in a
private GitHub repository that has been shared with AMI employees. Inference on new patient
data can be performed using aforementioned scripts on a system with at least § GB RAM and
Python installed. Package dependency installation, needed for the scripts to import necessary
modules, is also a one-time task that must be run on the machine prior to deployment. Since our
model is only trained on 127 of AMI’s proprietary patient dataset of 1000+ patients, we highly
recommend training on the larger dataset to obtain a more robust model for deployment. Model
training and data processing scripts are also provided so that AMI can perform larger training
experiments with their proprietary datasets.

Conclusions and Future Directions

To conclude, we have successfully developed AMI-Net, a Deep Learning model that takes
in input CT images and outputs a categorical site of occlusion as zero or more of 15 brain regions
served by different cranial blood vessels. We explored 4 methods- a simple rule-based method, a
simple 4-layer CNN architecture, fine tuning a pre-trained MobileNetV2 architecture, and
fine-tuning a pre-trained EfficientFormerV2 architecture. With data from only 127 patients, and a
train-val-test split of 64-16-20, we already achieve 82% and 93% on precision and recall,
respectively, and only expect to increase once AMI uses all of its data (1000+ patients).

In general, fine tuning more complex architectures works better than training a simple
architecture from scratch; the fine tuning methods achieve F1 scores of 87% and 84%, greater
than 79%. Further, the best method, MobileNetV2, is significantly better than the non-neural
rule-based system currently available to AMI (87% vs 34% on F1).

We are excited about future work that can improve results even further. The main next step
is to train on the full dataset of 1000+ patients, so we can further steer weights of the pretrained
model to fit our task of clot detection. We can also perform more extensive hyperparameter
tuning, especially for the EfficientFormerV2 architecture, to determine whether EfficientFormer
being worse than MobileNetV2 is truly due to limitations in the model architecture (attention vs
convolution), or a limited search of the hyperparameter space.

Continuing, we wish to investigate models that can take both raw CTA scans and SPIRAL
maps as input; this way we can investigate whether including both the pure/original data and the
processed SPIRAL predictions can give better results than just training on raw scans. Since
predictions on what regions to perform surgery on can be life-threatening, we could also consider
an ensemble approach, using 3 methods to come up different region predictions, and performing
majority voting to get the final predictions. This would give us more confidence in our results.

To improve the accuracy of our method while being able to run on a single CPU, we want to
consider methods that evaluate affected regions by using a sliding window across the frames,
rather than a frame-by-frame approach. This way, we will take more of the brain into
consideration each time we run inference, giving us more data to predict off of and thus more
confidence.

11

References

[1] C. d’Esterre, C. McDougall, and P. Barber, “SYSTEM AND METHOD FOR GENERATING
PERFUSION FUNCTIONAL MAPS FROM TEMPORALLY RESOLVED HELICAL
COMPUTED TOMOGRAPHIC IMAGES,” Mar. 24, 2022

[2] K. Ramamurthy, M. R, A. Johnson, and S. Anand, “Neuroimaging and deep learning for
brain stroke detection - a review of recent advancements and future prospects,” Neuroimaging
and deep learning for brain stroke detection - A review of recent advancements and future
prospects - ScienceDirect,
https://www.sciencedirect.com/science/article/pii/S0169260720315613?fr=RR-7 (accessed Dec.
20, 2023).

[3] M. S. Sirsat, E. Fermé, and J. Camara, “Machine Learning for Brain Stroke: A Review,”
Machine Learning for Brain Stroke: A Review - ScienceDirect,
https://www.sciencedirect.com/science/article/abs/pii/S1052305720305802 (accessed Dec. 20,
2023).

[4] R. Raj, J. Mathew, S. K. Kannath, and J. Rajan, “StrokeViT with AutoML for brain stroke
classification,” StrokeViT with AutoML for brain stroke classification - ScienceDirect,
https://www.sciencedirect.com/science/article/pii/S095219762200762X (accessed Dec. 20,
2023).

[5] Y. Barhoumi and G. Rasool, “Scopeformer: N-CNN-VIT Hybrid Model for Intracranial
Hemorrhage Classification,” arXiv.org, https://arxiv.org/abs/2107.04575 (accessed Dec. 20,
2023).

[6] Halchenko, Y., et al. NiBabel. Accessible: https://nipy.org/nibabel/

[7] Carvalho, E.D., et al. “Diagnosis of COVID-19 in CT image using CNN and XGBoost”.
IEEE 2020.

[8] Sandler, M., et al. "MobileNetV2: Inverted Residuals and Linear Bottlenecks". CVPR 2018

[9] Dosovitskiy, A., et al. "An Image is Worth 16x16 Words. Transformers for Image
Recognition at Scale." ICLR 2021.

[10] L1, Yanyu, et al. "Efficientformer: Vision transformers at mobilenet speed". NeurIPS 2022.

[11] AI-Powered Imaging Biomarkers for Better Treatment | Radiology Al,
https://www.brainomix.com/. Accessed 20 December 2023.

[12] GE Healthcare, 24 June 2019,

https://www.gehealthcare.com/en-sg/?utm medium=cpc&utm_source=google&utm campaign=

USC-PS-REG-AlwaysOn&utm_term=&utm_content=12518725892&npclid=Cj0KCQiAyeWrB

hDDARISAGPImWTw75tpBxjR9178bijCg4dvoqZbolGICIM _sfOjAI899Wk6eZ4NGkcaAjKIE
ALw_wcB&gad source=1&gclid=C. Accessed 20 December 2023.

12

[13] e-Stroke | Automated Al-powered Decision Support for Stroke Assessment.” Brainomikx,
2023, https://www.brainomix.com/stroke/. Accessed 20 December 2023.
https://www.brainomix.com/stroke/

[14] Verdolotti, Tommaso, et al. “ColorViz, a New and Rapid Tool for Assessing Collateral
Circulation during Stroke.” NCBI, 20 November 2020,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699692/. Accessed 20 December 2023.

[15] IM, Ospel, and Volny O. “Displaying Multiphase CT Angiography Using a Time-Variant
Color Map: Practical Considerations and Potential Applications in Patients with Acute Stroke.”
PubMed, 9 January 2020, https://pubmed.ncbi.nlm.nih.gov/31919139/. Accessed 20 December
2023.

[16] Andromeda Medical Imaging, 2023, https://andromedamedicalimaging.com/. Accessed 20
December 2023.

[17] Ranta, Anna, et al. “Current challenges in the endovascular treatment of medium vessel
occlusions.” Frontiers, 24 July 2023,
https://www.frontiersin.org/articles/10.3389/fstr0.2023.1242961/full. Accessed 20 December
2023.

Attribution Table

13

Name Responsibilities Contributions
Haani Ahmed - Model Design for baseline | - Model Design for baseline
CNN, MobileNetV2 and CNN, MobileNetV2 and
EfficientFormerV?2 EfficientFormerV?2
- Model Training - Model Training
- Presentation and report - Exploratory Data Analysis
writing - Model Evaluation
- Hyperparameter tuning
- Data preprocessing and
loading
- Visualizations
- Presentation and report
writing
Alaap Grandhi - Model Design for baseline | - Model Design for baseline
CNN, MobileNetV2 and CNN, MobileNetV2 and
EfficientFormerV2 EfficientFormerV2
- Model Training - Model Training
- Presentation and report - Exploratory Data Analysis
writing - Model Evaluation
- Hyperparameter tuning
- Data preprocessing and
loading
- Visualizations
- Presentation and report
writing
Hshmat Sahak - SPIRAL baseline creation - SPIRAL baseline creation
and evaluation and evaluation
- Exploratory Data Analysis - Exploratory Data Analysis
- Presentation and report - Most of the presentation and
writing report writing
Nabil Mohamed - Hyperparameter Tuning for |- Hyperparameter Tuning for
CNN baseline CNN baseline
- Data augmentation and - Data preprocessing
preprocessing - Presentation and report
- Presentation and report writing
writing
Yawar Ashraf - Hyperparameter Tuning for |- CPU runtime measurement
CNN baseline - Presentation and report
- Data augmentation and writing
preprocessing
- CPU runtime measurement
- Presentation and report

14

Appendix
Al: Data Exploration
In this section, we will walk the reader through a preliminary data exploration that will allow
them to understand the intricacies behind the dataset we are dealing with. Please note that this
analysis is meant to be extra information. The report should be self-contained; the data section
should include all information required to understand our methodology

a. File Structure
Let us select a patient, say Patient #379. We observe the following files:

D 379_clotnii NIl File 129KE No 131,585 KB 100% 2023-11-26 4:47 PM
w0 ATLASMASKregAunii Compressed Archive Folder 846 KB No 965 KB 13% 2023-11-26 447 PM
o CTALN Compressed Archive Folder 64485 KB No 64466 KB 0% 2023-11-26 447 PM
= CTAZregAunii Compressed Archive Folder 63275KB No 63257TKB 0% 2023-11-26 4:47 PM
w CTA3regAunii Compressed Archive Folder 63942 KB No 63924 KB 0% 2023-11-26 447 PM
D SpiralregA.nii NIl File 17,998 KB No 131,585 KB 87% 2023-11-26 447 PM

Figure 7: All files for a single patient

b. CTA Scans
The 3 CTA files are meant to be 3 separate CTA scans. The regA means the individual frames of
the scan are aligned. For input to our model, we wish to use these reg files (assuming input is

raw CTA scan and not SPIRAL map), in order to simplify training. Let us investigate one of the
CTA files.

load first file
brain = nib.lcad(379/CTA2reghA.nii.gz")
print({brain.shape)

(512, 512, 257)

Figure 8: Raw CTA data shape

The scan is 512x512x257. We visualize this scan below.

Figure 9: Visualization of raw CTA scan

The pixel values of the 3D brain scan are summarized by the histogram below:

1e7 Raw CTA Scan Pixel Value Occurences

4.0

Frequency
[N N w w
w Q (%] (=] w
) |) | |

=
o
L

0.5

0.0 -
—-1000 —=500 0 500 1000 1500 2000
Pixel Value

Figure 10: Distribution of pixel values in raw CTA scan

An individual slice is visualized below:

visualize a slice

plot layer 28 / matplotlib
plt.imshow(brain_data[:,:,288], cmap='bone"}
plt.axis(off")

plt.show()

Figure 11: Individual slice from CTA scans of a single patient

15

16

A series of slices, from the top of the brain to the bottom, is shown in Figure 12.

Figure 12: Series of CTA scans from top of head to bottom

c. ATLASMASK File

We continue with Patient 379, this time investigating the ATLASMASK. To begin, observe that
the dimensions of the ATLASMASK and CTA scans are the same, i.e. they are aligned. This
means if we identify regions of the brain, the neurologist will be able to easily find the
corresponding regions in the scan.

load first file

brain = nib.load("'37%/ATLASMASKregh.nii.gz")
print(brain.shape)

brain_data = brain.get_fdata()

(512, 512, 257)

Figure 13: Shape of ATLASMASK data

We visualize the ATLASMASK below.

Figure 14: Visualization of ATLASMASK

The pixel values of the 3D ATLASMASK are summarized by the histogram below. For any
patient, the pixel values can only be between 0 and 14, inclusive.

1e7 ATLASMASK Pixel Value Occurences
6 -
5]
4]
>
9
=
g
g3
[
S
2
14
0+ — ; T T
0 2 4 6 8 10 12 14
Pixel Value

Figure 15: Distribution of pixel values in ATLASMASK

An individual slice is visualized below:

Visualize a slice

plot layer 2@ / matplotlib
plt.imshow(brain_data[:,:,28@], cmap="bone’)
plt.axis(off")

plt.show()

Figure 16: Individual slice from ATLASMASK of a single patient

18

A series of slices, from the top of the brain to the bottom, is shown in Figure xyz

Figure 17: Series of ATLASMASK scans from top of head to bottom

d. SPIRAL Map File

We now investigate the SPIRAL file of the same patient. First, observe that we retain the
consistent dimension 512x512x257. This has the same implications mentioned in part ¢, namely
that we can use the ATLASMASK to identify which part of the SPIRAL map corresponds to
affected regions. It also means we can train models that take SPIRAI and raw CTA scans
concatenated as input.

load first file
brain = nib.load('379/Spiralregf.nii’)

print(brain.shape)

(512, 512, 257)

Figure 18: Shape of SPIRAL mask

19

We visualize the SPIRAL map below:

Figure 19: Visualization of SPIRAL map

The pixel values of the 3D SPIRAL map are summarized by the histogram below. For any
patient, the pixel values are real numbers between 0 and 1.

1e7 SPIRAL Map Pixel Value Occurences
6_
5
41
-
2
c
S3
5
i
24
1
0_
0.0 0.2 0.4 0.6 0.8
Pixel Value

Figure 20: Distribution of pixel values in SPIRAL map

An individual SPIRAL slice is shown below:

i Visualize a slice

plot layer 2@ / matplotlib
p1t.imshow(brain_data[:,:,2ee], cmap="bone")
plt.axis(off")

p1t. show()

Figure 21: Individual slice from SPIRAL map of a single patient

20

A series of slices, from the top of the brain to the bottom, is shown in Figure xyz

Figure 22: Series of SPIRAL map scans from top of head to bottom

e. Clot File
The trend continues. The clot file has the same dimensions. This is especially important as it
makes data labeling easy. We simply find the brain regions corresponding to blood clot pixels.

load first file
brain = nib.load{"379/379 clot.nii")

print(brain.shape)

(512, 512, 257)

Figure 23: Shape of Clot file

We visualize the clot file below. Observe how these clot files are very sparse. The pixel(s)
corresponding to clots are circled.

21

z=101

Figure 24: Visualization of Clot file

The pixel values of the 3D clot files are summarized by the histogram below. For any patient, the
pixel values are either 0, 1, or 2. For our purpose, we treat 0 as pixels not affected by the stroke
and 1,2 as pixels affected by the stroke. As can be seen in the bar graph below, the clot file is
very sparse - almost all pixels are 0!

1le7 Clot File Pixel Value Occurences

7

6

5

Frequency
w -

N

-

T T
1 2
Pixel Value

Figure 25: Data Imbalance in Clot File

To show that there are non-zero clot pixels, we can choose to ignore 0 in the clot. This gives:

Clot File Pixel Value Occurences

60

Frequency
8 & 8

r
=]

,_.
o

1 2

Pixel Value

Figure 26: Clot Pixel Values (only non-zero values)

22

An individual clot slice is shown below:

Figure 27: Clot Visualization for a single 2D frame

A series of clot slices, from the top of the brain to the bottom, is shown in Figure 27

Figure 28: Series of Clot file scans from top of head to bottom

23

A2: Results

a. SPIRAL Rule-Based Baseline:

The results of our rule-based SPIRAL map to affected brain regions across all 4 metrics are
shown in Figure xyz. The optimal threshold is highlighted in green. For this non-neural approach
we do not highlight the best precision, accuracy or recall. It is intuitive that the higher the
threshold, the better the precision and the lower the threshold, the better the recall.

Threshold Precision Recall Accuracy F1 Score
0.0 0.1577 0.7089 0.2139 0.2579
0.1 0.1577 0.7089 0.2139 0.2579
0.2 0.1577 0.7089 0.2139 0.2579
0.3 0.1577 0.7089 0.2139 0.2579
0.4 0.1577 0.7089 0.2139 0.2579
0.5 0.1577 0.7089 0.2139 0.2579
0.6 0.1559 0.6747 0.2330 0.2532
0.7 0.1659 0.6507 0.3023 0.2644
0.8 0.1879 0.5445 0.4587 0.2794
0.9 0.3344 0.3596 0.7386 0.3465
0.95 0.5443 0.1473 0.8119 0.2318

Table 1: Evaluation metrics across various thresholds for our rule-based method

b. CNN Baseline:

i) Using SPIRAL as Input

The results of our CNN baseline across different hyperparameter settings are shown in Figure
xyz. The best results are highlighted in green. Note that the setting that optimizes the F1 score
also optimizes precision, recall, and accuracy.

pool dim 4 4 4 4 4
feat dim 512 512 512 512 512
activation tanh relu siemoid relu siemoid
learning rate | 0.0013 0.00061 0.0031 0.0048 0.00068
dropout prob 0.32 0.39 0.20 0.13 0.17
pos weight 17.72 15.26 15.58 12.29 13.91
extra layers 0 2 2 4 2
resize dims | 128x128 | 128x128 512x512 512x512 128x128
iterations 8 20 4 8 4
total time (s) 79.80 106.68 288.84 478.25 67.42
Val F1 0.33 0.60 0.18 0.40 0.17
Val Precision 0.20 0.46 0.35 0.27 0.11
Val Recall 0.91 0.86 0.13 0.77 0.41
Val Accuracy 0.96 0.99 0.99 0.98 0.96

Table 2: Evaluation metrics across different hyperparameter settings for simple CNN using
SPIRAL map as input

24

ii) Using Raw CTA Scan as Input:

We tabulate the same hyperparameters and evaluation metrics as above, but train and test using
the raw CTA scan as input. Once again, the setting that optimizes F1 score also optimizes the
other 3 metrics.

pool dim 4 4 4 4 4
feat dim 512 512 512 512 512
activation tanh relu sigmoid tanh sigmoid
learning rate | 0.0011 0.0019 0.0007 0.0009 0.0014
dropout prob 0.25 0.31 0.29 0.27 0.32
pos weight 12.91 13.41 14.97 15.65 14.28
extra layers 2 2 2 2 2
resize dims | 256x256 | 256x256 512x512 128x128 128x128
iterations 20 16 4 20 4
total time (s) | 325.90 298.29 252.01 132.72 52.29
Val F1 0.62 0.47 0.19 0.67 0.36
Val Precision 0.51 0.32 0.16 0.51 0.23
Val Recall 0.78 0.89 0.24 0.95 0.78
Val Accuracy 0.99 0.98 0.98 0.99 0.97

Table 3: Evaluation metrics across different hyperparameter settings for simple CNN using raw
CTA scan as input

A3. Model Architectures
In our complex model fine tuning approaches, we consider 2 main architectures: MobileNetV2
and EfficientFormerV2. These architectures are visualized in Figures 29 and 30, respectively.

IMobileNetv2 !
O D e ey T
|
} ’ | |Bottleneck Layer |
| | : |
| | Convolution 2D | | I @ [
| | | 1
I ¥ I 1 I
I | Bottleneck | |] | 1x1 Expansion Layer }— I
|
| | ¥ |
| L | ! — |
| | Bottleneck | | : | Normalization Layer |]
| | |
| ¥ P L I
I | Bottleneck | : 1 | Activation ReLU 6 | I
| v | : |
| | | 3x3 Depthwise |
I e el : 1 convolution :
| v | : |
| | Bottleneck | | | | Normalization Layer |]
| | 1
| ¥ ro ¥ i
I | Bottleneck | I] | Activation ReLU 6 | I
! 3 o ¥ !
I | Bottleneck | | : | 1x1 Projection Layer | |
| | |
| ¥ Lo L [
I | Convolution 2D 1x1 | : | | Activation ReLU 6 | I
I ¥ ! N i,,,,,,,l I
I | Average Pooling 7x7 | | : : Add :4— :
| ey TTTTTTTy T |
| + Lo I
| | Convolution 2D 1x1 | I | I
|
| oL I
| /-
| Covpwe > |
S |

Figure 29: MobileNetV2 Architecture

25

EfficientFormer

[MB(4D)

Figure 30: EfficientFormerV2 Architecture

We use these pretrained architectures via transfer learning - we initially train only the classifier
weights, then unfreeze the base model and finetune all weights at a smaller learning rate.

EfficientFormerV2 Classifier Layer

J0108A
PR DENIEIERT)

.

Feature Extractor: g Randomly

MobileNetV2 or —» 2 Initialized
q

SPIRAL or raw
CTA frame

Figure 31: Transfer Learning Approach for Complex Neural Architectures

