MIE444 Final Report

Yawar Ashraf 1006293672
Nishant Kumar 1005750849
Adi Bhattacharji 1005871629
Maanhar Singh 1005786197

Executive Summary

Our robotic navigation system employed a combination of ultrasonic sensors, Arduino
programming, and a modular code structure to address challenges in obstacle
avoidance, localization, and block delivery. The initial design utilized four ultrasonic
sensors but faced issues with the robot's tendency to veer right. To counter this,
additional sensors were added at 45-degree angles, significantly improving obstacle
avoidance.

Localization initially posed challenges with MATLAB issues and particle filter
complexities. A strategic shift to a semi hard-coded algorithm, integrating wall-following
and rotation, proved effective. Our block delivery strategy utilized a gripper system with
a rack and pinion mechanism, driven by low-cost servo motors. The robot's movement
and block handling were governed by a meticulous code structure with obstacle
avoidance, sensor alignment, and precise block detection.

During testing, the obstacle avoidance strategy demonstrated success in the first trial
but faced challenges in Milestone 3, highlighting the importance of robust threshold
values and comprehensive testing. The localization strategy faced initial hurdles but
achieved success with a semi hard-coded approach. Block delivery encountered issues
in block detection, particularly in misinterpreting maze corners, yet achieved success
with autonomous navigation in Trial 3.

The modular code design facilitated efficient debugging and adaptability, overcoming
unexpected challenges. Despite challenges, our robotic system demonstrated notable
achievements in obstacle avoidance, localization, and block delivery, showcasing its
potential for further refinement and application in diverse scenarios. Ongoing
improvements in sensor calibration and code optimization are essential for enhancing
overall performance and reliability

1. Detailed Rover Control Strategy

1.1 Obstacle Avoidance Strategy

Our approach involved equipping the robot with ultrasonic sensors and programming it
with an Arduino to smartly navigate and avoid obstacles in its path. Our initial strategy
was simple yet promising. We mounted four HS-S04 ultrasonic sensors on our robot,
each pointing in the relative directions that were perpendicular from each other as seen
in Figure X.

FRONT

LEFT RIGHT

BACK

Figure 1: Initial Ultrasound Sensors on Robot

After installing these sensors, the avoidance strategy was fairly straightforward. The
arduino was continuously getting real time readings from the sensors. It will
continuously check for walls in all directions. It was coded so that the robot would move
forward until its front-facing sensor detected an obstacle, specifically a wall, within 15
centimeters. If it sensed a wall directly ahead, it would check for walls to its left and
right, again via ultrasonic sensor readings. Very similar to the front facing sensor, the
threshold value for the left and right was 15 centimeters as well. Depending on where
the walls were, it would turn 90 degrees in the opposite direction. If the robot was
enclosed by walls on three sides, it would turn around completely and head back the
way it came. A key part of our strategy was how the robot handled open spaces. If it

sensed a wall directly ahead and found no walls on either side, it would turn towards the
side with more space. This is further explained in the flow chart in Figure X.

One of the most significant challenges we encountered in our project was ensuring that
our robot moved in a straight line and one of our biggest mistakes was not fixing this
until milestone 3. Encoders would have been a simple solution but we got to working on
the problem too late to employ this solution. However, we did go through a thorough
testing process to determine the root cause of the problem and came up with a fix. The
fix wasn’t ideal but it worked.

Ouir first step was to carefully check all the parts of the robot. We wanted to understand
why it was not moving straight and kept drifting to the right. After examining everything
and swapping out various components, we thought that the issue might be due to the
way the robot's weight was distributed.

To test this idea, we changed the robot's programming to see if altering the way the
wheels moved would help. We tried making the right wheel move slower, and the left
one faster for the same amount of time, but this did not solve the issue.Finally, we
programmed the robot to move its left wheel for a set amount of time, then stop it. After
that, we did the same thing with the right wheel. This approach allowed the robot to
move forward in a straight line and stay facing the front.

Begin Operation

/

Read Sensors

Check Right Sensor Check Left Sensor

Right Obstacle Left Obstacle
(sensor_reading_right_45 < 9) (sensor_reading_left_45 < 9)
IF TRUE: Turn Right'B F TRUE: Turn Left By 20 Deg
ELSE
NED
Forward

Both Sides Blocked

IF Front Obstacle or Rear & Left Clearance
(sensor reading front < 13)

or
(sensor reading left >= 60 and sensor reading back > 65)

Left Clearance
(sensor reading_left >= 20)
ELSE IF All Sensors > 35

1

Localized without Direction
(All Sensors > 35)

ICheck Sensors

Check Left Clearance [Check Right Clearance

Right Clearance
(sensor_reading_right >= 20)

Check Localization with Direction
(Specific Sensor Conditions)

Not Localized
(10-degree Left Turn)

Continue Operation

Localized with Direction

Figure 2: Flowchart of Robot Avoidance Strategy

Despite our planning, we encountered a major challenge: our robot had a strong
tendency to veer right. It would mean that the rover continued to collide with the wall at
a 45 degree angle. This meant that our sensor setup did not account for obstacles at 45
degree angles. To solve this, we added two more ultrasonic sensors, this time angled at
45 degrees to the front of the robot, facing front left and front right, seen in Figure X,
which is the updated version of the sensors on the rover.

FRONT

LEFT RIGHT

BACK

Figure 3: Updated Ultrasound Sensors on Robot

If the front left and front right sensor detected an obstacle within 6 centimeters, the robot
would adjust its course slightly in the opposite direction. This adjustment was crucial
and significantly improved our robot's obstacle avoidance strategy. For instance, if the
northeast sensor detected a wall or an obstacle within 6 centimeters, the robot was
programmed to correct its course by slightly turning to the left. This subtle adjustment
played a key role in reducing the robot's tendency to drift rightward. Some of the
unexpected improvements that it also provided was navigating tight spaces and corners
more smoothly. Furthermore, the angled sensors were effective in identifying potential
collisions with walls on the robot's side that were not recognized by the front-facing and
side-facing sensors. Overall, improving the sensor coverage by adding the front left and
front right sensors enabled the robot to maintain a straighter trajectory and avoid
collisions, ensuring more reliable and accurate navigation through the maze.

Using this type of obstacle avoidance caused two different challenges. The first was one
the most time-consuming aspects of our project, which was to fine-tune the threshold
values for the sensors. This process was tedious and required extensive trial and error.

We ran the robot from various starting points in the maze, observed its performance,
and noted where and why it crashed. Each crash led to adjustments in our threshold
values, ensuring the robot wouldn't fail in the same spot again. This was crucial as
different points in the maze affected the sensor readings differently, making it a time
consuming and nuanced task.

The other challenge we faced was specific yet infrequent: the robot occasionally
struggled with corners, especially when approaching one at a 22.5-degree angle. This
angle was out of the detection ranges of our front and angled sensors. Since this was a
rare occurrence, it was still a potential issue. However, considering the low probability of
this happening, we accepted this risk as part of our design.

1.2 Localization and Navigation Strategy

When formulating our localization and navigation strategy, we encountered a
noteworthy challenge when implementing the histogram localization code. There were
issues running MATLAB in a local environment, which impeded the practicality of this
approach. This forced an entire revision of our methodology. Furthermore, our original
approach involved subjecting the robot to multiple simulations with the anticipation that
one would converge to the correct value, offering a reliable estimation of the robot's
orientation. However, the inherent risk in this method lay in exposing the rover to subtle
biases in the real-world environment, subsequently compromising the reliability of
localization readings derived from the histogram localization simulation.

In response to the multifaceted challenges, we made a strategic pivot towards deploying
a particle filter, recognizing its inherent invariance to the robot's heading. This shift,
while promising, was not without its intricacies. We grappled with the initial complexities
of setting up a custom Simmer environment and developing the algorithm.
Nevertheless, we maintained our belief in the advantages offered by the particle filter,
seeing them as outweighing the challenges. However, the completion of the algorithm
brought unexpected performance issues to light, laying fundamental flaws in our initial
assumptions.

A crucial limitation surfaced during our analysis: the absence of a direction assignment
for each sampled point. Our process of updating the confidence of each square during
time steps and normalizing the probabilities for each square at the end of each time
step led to a peculiar scenario. The robot appeared stuck due to a sudden jump in
square probability to 100% after normalization, despite a reduction in the same time

step. Complicating matters further, issues resembling exploding weights and vanishing
weights emerged, casting shadows on the reliability of the particle filter.

Robot Maze
0 5 10 15 20 25 30 I 1.0

- 0.8

r 0.6

Y-axis

| i

T
X-axis

Figure 4: First iteration of the patrticle filter with exploding/vanishing weights

Robot Maze

Y-axis

Figure 5: Fixing Exploding weights and going off of only the number of particles in a
region. Experiencing poor convergence

Faced with these intricate problems and constrained by time (having less than 24 hours
to devise a solution), we strategically decided to veer away from both the histogram
localization and particle filter algorithms. Instead, we opted for a semi hard-coded
algorithm, which centered on continuous robot movement until it reached a unique spot
in the maze.

This selected algorithm seamlessly integrated a wall-following policy as the robot
maneuvered through the maze, with a particular emphasis on following the right wall.
With eight sensors in total — front, right, back, and left, complemented by a second set
rotated at 45 degrees — the robot sought to detect itself in a localization square where

no walls were present on all four sides. Upon successfully localizing, the robot initiated
a clockwise rotation to align itself northward, referencing the simmer environment.

Front

Left Right

Back

Figure 6. Added two more sensors to the back to try to detect our localization square.

Figure 7: Localization Zone in the Maze labelled by blue square

The determination of cardinal direction thresholds, meticulously informed by extensive
maze testing, played a pivotal role in this process. Successfully localized within the finite
maze environment, the robot embarked on movements toward the loading zone based
on sensor readings. This triggered middleware code to validate the robot's arrival in the
loading zone, subsequently activating middleware code related to block detection and

delivery upon reaching this crucial point. This strategic shift towards a semi hard-coded
algorithm allowed us to navigate the intricate challenges efficiently and make substantial
progress within the time constraints, thereby ensuring the ultimate success of our
overall robotic navigation system.

1.3 Block Delivery Strategy

The gripper system for the robot utilizes a rack and pinion system to provide the
gripper’s jaw movement mechanism. It consists of two parallel jaws driven by individual
rack and pinion systems, enabling parallel and consistent movement while gripping the
block. The parallel rack and pinion system is compact, making it a suitable design due
to the limited space available for the gripper system on the rover.

The gripper claw utilizes a low-cost MG996R servo motor to drive the pinion gears to
open and close the gripper claw. The servo-controlled aspect of the system ensures
precise and programmable control over the jaw movement.

The robotic arm was controlled by another MG996R servo motor that was used to lift
the gripper claw upwards and downwards to lift the block. The entire robotic gripper
mechanism was 3D printed by using PLA. The use of a low-cost MG996R servo motor
allows the rover to operate within the budget constraints without compromising
performance.

..-*.

L T R

Figure 8: 3D CAD design of Gripper Claw, showing the parallel rack and pinion system

The strategy for handling block delivery involves entering the loading zone, grabbing
and taking the block to the final drop-off point to eventually release the block. The code
employs a combination of obstacle avoidance, sensor alignment through rotation, and
block detection to achieve its goal. The primary control structure is a "while’ loop that
continues execution until the variable "blockpickup® becomes True. This variable serves
as a flag indicating whether the robot has successfully picked up the block. The loop
encapsulates the entire navigation and pickup logic, ensuring continuous execution until
the desired objective is met.

Figure 9: Picking up the block using the Rover

To grab the block, the rover would recognize that it's entering the loading zone. It then
turns 90 degrees to orient itself from its center. To make sure that it sees the block, it
turns by small rotational increments of 15 degrees until it realizes the direction where a
block exists. There is a brief pause that allows the robot to adjust its orientation. To
determine the direction of the block, the microcontroller subtracts the readings of the
bottom and front sensors. It then compares the difference in the values to a specific
threshold. If the difference falls below a specified threshold, the robot acknowledges the
difference and pauses to read sensors another two times to make sure that the block
has indeed been detected and the difference in sensor readings is not due to just noise.
While rotating, a counter is employed that helps in tracking the number of times a
significant difference between the bottom and top front sensor is detected. This is so
that once it passes 360 degrees, it will move forward by half a step and redo the
rotations by 15 degrees.

Upon detection, the rover would stop rotating and it would position itself so that the

gripper points towards the middle of the block. When the difference between the top and
bottom sensor has the same value for more than a specified iteration (our case was 3

10

sensor readings). The code exits out of the rotation loop and the rover is able to identify
the direction of the block successfully.

Upon moving forward, the top front and bottom sensors are continuously providing
distance values and the difference in their values is compared to a threshold. When the
threshold value is less than 6.5 cm, the robot identifies that it has successfully reached
the block. Now, the gripper will grab the block by opening the gripper claw, moving the
arm down, close the gripper and move the arm up in order to lift the block.

Gripper in . - Gripper
) . Gripper Robol moves .
= Ready Open - - 1 - A= - - Releases
ol LIDSBES o Final Zone .
Position Block

Raobot

.-".F]|]|::_|-_!| g | [

Figure 10: Flowchart of Gripper Strategy

By conducting thorough testing, we discovered that ultrasonic sensors exhibit subpar
performance when encountering walls or blocks at an angle relative to the sensor. This
was detrimental in detecting the block as we compared the difference in the
measurement between the top and bottom sensor that would be compared to a
threshold value.

As a result, we took into account the extreme cases when the block is at relative angles
to the sensor and included a separate test case in the code. The rover would move to
the side and then forwards so that the sensor is perpendicular to the block. The rover
makes use of the ultrasonic sensor to realign itself with the block in the maze. Also,
making sure that the block was initially placed in the maze parallel to the maze walls,
helped in mitigating the issue.

In order to mitigate other issues and increase the overall speed of the robot, the group
determined that utilizing the rover's high degree of rotational precision would be a
quicker approach. This was taken advantage of by recording the total number of
rotations the rover made. As it kept count, this would eventually be helped when the
robot needed to head to the localization zone. It would then go to the drop-off zone
based on code from said localization spot. Moreover, we included comments such as
“‘we have the right direction” and “we have reached the block” to make programming
and defining functions easier.

11

Once the block was secured, the rover would localize itself based on the current
position and navigate to the user-defined drop zone. Upon confirming its location within
the drop zone, the rover moved the arm down and opened the grabber to drop-off the
block.

1.4 Integration

Our comprehensive code pipeline was meticulously structured in a modular fashion,
consisting of distinct components at lower, middle, and higher levels. At the foundational
lower level, we intricately implemented code to govern elemental robot movements such
as forward, backward, rotation, sensor readings, motor stoppage, and the manipulation
of the robot claw and robotic arm. The middle-level code was instrumental in
orchestrating complex actions, including block pickup and drop-off, thorough sensor
readings, and error correction movements. Simultaneously, the high-level code
encapsulated sophisticated routines for detection, obstacle avoidance, localization, and
block pickup and drop-off.

Our strategic approach to code design prioritized modularity, with a foresight into
potential issues that could potentially disrupt the code's seamless functionality. Despite
the discrete routines, we ensured a sequential implementation, strategically deploying
flags to activate and deactivate specific sections based on the progression of the
sequence. This modular structure not only facilitated ease of debugging but also
adhered to an organized and systematic development approach.

In particular, our localization code was thoughtfully designed to minimize dependence
on the robot's precise position throughout its operation. Initially, the robot embarked on
a movement until it autonomously localized itself, as detailed earlier. Once successfully
localized, the navigation was precisely directed towards the loading zone. This unique
capability stemmed from the robot's knowledge of both its position and heading.
Subsequently, the robot continued its movement towards the loading zone, with a
specific flag activated to detect its arrival. Upon reaching the loading zone, control
seamlessly transitioned to the block detection code, operating in a manner analogous to
other major robotic functions.

The block detection code persisted in its endeavors to locate the block, maintaining the
block pickup flag at a low state. The successful pickup of the block triggered a
significant shift in the block pickup flag, setting it to a high state. This strategic decision
promptly returned control to the localization code, allowing the robot to re-localize itself.
Following this, the robot deftly navigated to the block drop-off location, with the

12

predetermined drop-off location and its corresponding flag manually activated before
each test based on insights from the teaching team.

Post-localization, control seamlessly transitioned to the drop-off zone navigation code,
initiating a meticulous three-step process for the block drop-off: the controlled lowering
of the robotic arm, the precise opening of the claw, and the methodical raising of the
robotic arm. Throughout this entire process, the obstacle avoidance code remained
actively engaged, ensuring continuous functionality. However, our team encountered
additional challenges related to ensuring seamless communication between different
robot components. The tuning of serial communication delays became a critical
consideration, striking a delicate balance between a high success rate of data packet
delivery and avoiding unnecessary delays that could slow down the robot.

In light of these challenges, the team devoted additional effort to establish a proper
control flow within the code base, necessitating a comprehensive refactoring of the code
base and the implementation of a sophisticated flag system. This strategic decision
aimed not only to identify specific sections of the robot exhibiting unexpected behavior
but also to streamline control flow for more efficient problem-solving as a collaborative
team effort. The modular design further proved instrumental in detecting and effectively
resolving various edge cases that surfaced during rigorous testing runs, underscoring
the robustness and adaptability of our code architecture.

2. Final Results

2.1 Obstacle Avoidance Strategy

In assessing the performance of our rover, particularly in terms of its obstacle avoidance
capabilities, we observed a marked difference between its initial trial and the
subsequent Milestone 3 challenge. The effectiveness of the obstacle avoidance strategy
was notably influenced by factors such as code robustness and hardware readiness.

During the first trial, the rover's performance in obstacle avoidance was exemplary. It
successfully navigated through 20 blocks in the maze, achieving a perfect score without
a single collision. This success can be attributed to the meticulously fine-tuned
threshold values of the sensors and the effective integration of additional sensors at
strategic angles. The rover demonstrated an exceptional ability to adjust its course in

13

real-time, effectively avoiding walls and obstacles, and maintaining a straight path
throughout the maze.

Contrastingly, during Milestone 3, the obstacle avoidance system did not perform as
efficiently. The primary issue here was the lack of comprehensive testing, especially
concerning the partially hardcoded segment of the navigation from the localization point
to the loading zone. The threshold values in this section of the code were not as robust
as those in the main obstacle avoidance algorithm, leading to minor collisions. This
highlighted the importance of thorough testing across all code segments to ensure
consistent performance under varying conditions.

Another critical factor that impacted the rover's performance during Milestone 3 was the
insufficient battery charge. This resulted in the motors receiving less power than usual,
causing the rover to move and turn inadequately. Such a deviation from the expected
behavior significantly disrupted the calibration of the obstacle avoidance code. It
underscored the necessity of ensuring hardware readiness, particularly in terms of
power supply, to maintain the integrity of the programmed navigation and obstacle
avoidance strategies.

2.2 Localization and Navigation Strategy

In Milestone 2, our robot was able to successfully localize itself within the Simmer
environment. This milestone in our development process showcased the ability of the
code to understand and navigate a simulated space with the robot. A key issue we
faced was that the serial communication between the code and the actual robot had not
been set up and we were unable to get the robot moving in the actual maze. Building on
this, Milestone 3 brought about further advancements in localization capabilities.
Leveraging the implementation of serial communication, the robot was able to operate
within the physical maze environment. Throughout the first and second trials of
Milestone 3, the robot autonomously localized itself within the maze, exhibiting a reliable
understanding of its position and orientation. A key addition to the localization strategy
was to ensure that the team tested multiple times in the actual maze and therefore we
were able to identify many edge cases that allowed the robot to navigate reliably.
Throughout the project one of our key goals was to establish bluetooth communication
between the robot and the code however due to code environment issues we were
unable to do so.

14

2.3 Block Delivery Strategy

In Milestone 3, the robot had the task of autonomously arriving at the loading zone with
confirmation, picking up the block, and delivering it within a 7-minute timeframe.

During the practice attempts, the robot faced challenges in accurately detecting the
block. Despite navigating to the loading zone, it struggled to correctly identify the block.

Based on the ultrasonic sensor readings, the robot would misinterpret the corners of the
maze as the block. For example, the robot mistakenly identified a corner as the block,
executed the grabbing code, and proceeded to the drop-off point as if it had the load.
This issue seemed to stem from a discrepancy between the gripper ultrasonic sensor
and the front ultrasonic sensor when facing a wall. Also, at relative angles to the block,
the sensor would display extremely high distance readings (12m), which made it difficult
to detect the block.

Figure 10: Detecting the block to pick it up. Notice the bias it has

In Trial 3, the robot was able to successfully identify, pick up, and deliver the block to the
final drop-off point. Since the robot was controlled completely autonomously, it
accomplished the task with the help of some slight adjustments to its orientation.
Furthermore, the attachment of the gripper had fallen off when it got into the finish load,
rather than just dropping the block.

15

2.4 Integration

In Milestone 3, our robot reached a noteworthy achievement by successfully navigating
the entire process of picking up, identifying, and delivering a block, all while adeptly
utilizing our obstacle avoidance code. This showcased the integration of various
functionalities within our robotic system. However, the journey wasn't without its hurdles.
We encountered challenges in the smooth transition of control between different parts of
our code, resulting in delays during localization, block pickup, and subsequent
localization for drop-off. The pace of our robot's movements proved notably sluggish,
taking a considerable four minutes to reach the loading zone, leaving only a brief
one-minute window for localization and transportation to the final drop-off zone.

To enhance our system's efficiency, we identified potential improvements to reduce
these delays, aiming to elevate the overall responsiveness of our code. A specific
challenge arose during the block pickup phase, exposing issues in the integration
between straight-line driving and block detection. The robot displayed a bias towards
the right, affecting its ability to align precisely with the block for successful pickup. This
highlighted the need for further refinement in coordinating motor movements and sensor
readings to ensure accurate alignment during critical tasks. Addressing these
challenges in control flow and responsiveness, coupled with fine-tuning the integration
between driving and block detection, is a pivotal focus as we strive to optimize the
efficiency and overall performance of our robotic navigation system in subsequent
iterations.

3. Discussion

Best Features:

In terms of notable characteristics, the implemented code pipeline stood out for its
remarkable modularity, allowing for comprehensive control over the various aspects of
the robot. The robot's equilibrium was another positive attribute, contributing to its
overall stability during operations. The inclusion of castors played a crucial role in
enhancing the robot's mobility and balance. Additionally, the design exhibited a
simplicity in hard coding, facilitating ease of debugging—a feature that proved beneficial
during the development process. The small and compact design, while advantageous in
reducing the likelihood of collisions with walls, was also instrumental in navigating
through confined spaces.

16

Worst Features:

The robot encountered difficulty maintaining a consistent straight trajectory primarily due
to a discernible bias in the right motor, and the absence of encoders contributed to
imprecise control. The issue of unreliable Bluetooth connectivity drew attention to the
necessity of establishing robust communication protocols adaptable to diverse hardware
configurations. On the mechanical front, concerns centered around the inadequately
secured gripper and unresolved servo motor connection problems. Frequent collisions
with walls highlighted the intricacies of collision avoidance mechanisms, and the limited
range for block detection at specific angles emphasized the importance of refining the
robot's sensing capabilities. The aesthetic aspect of the robot's design was not
overlooked, with observations noting components haphazardly taped up and H-drives
protruding, impacting the overall visual appeal of the robot. To effectively address these
challenges and enhance the robot's overall performance, future iterations should
prioritize comprehensive improvements encompassing hardware enhancements,
software optimizations, and a refined system design approach.

Figure 11: Testing parts to make sure everything works in tandem

17

Practical Solutions for Improvement:

In terms of practical solutions for enhancement, employing time-of-flight sensors to
obtain reliable readings proved advantageous compared to using ultrasonic sensors,
which presented challenges when detecting objects at angles. Considerations for the
robot's platform design, particularly accounting for gripper attachment, could be
incorporated. This involves reverse engineering to ensure compatibility between gripper
and rover designs. Ensuring adequate space for complete mobility and the proper
addition of components, such as the buck converter and h-bridge, became integral for
seamless functionality.

Design Compared to Initial RFP and others:

The evolution of the design, informed by enhanced knowledge of power and electrical
systems, showcased notable improvements. Complexities in the initially proposed
gripper design led to a streamlined and more achievable version. Drawing inspiration
from other groups, the incorporation of IR sensors at 45-degree angles offered a
potential solution to minimize collisions and enhance block detection.

Future Project Considerations

Reflecting on the project, several insights emerged for future endeavors. Addressing
visible challenges promptly, such as implementing solutions for straight-line movement,
would be a priority. Transitioning from Arduino to Python coding at an early stage and
ensuring a stable power circuit through soldering were identified as strategic moves.
Design considerations, like creating larger platforms for wiring maneuverability, were
deemed beneficial. Ensuring the gripper's sufficient mounting and early integration into
the design process were highlighted for improved functionality. Understanding the
power circuit's limitations and potential failures underscored the need for thorough
planning.

18

Project and Team Management:

In terms of project and team management, initiating regular team meetings and
check-ins from the project's onset was deemed essential. Recognizing the
consequences of delayed initiation on project timelines emphasized the need for timely
planning and execution. Holding team members accountable for tasks and promoting
fair task distribution were recognized as vital aspects of effective collaboration. The
importance of team members actively contributing from the project's initiation
highlighted challenges associated with mid-project contributions. Setting measurable
goals, having open communication channels, and establishing expectations for timely
updates in case of missed deadlines were identified as foundational for a successful
team dynamic. The team's core values centered on sincerity in work ethic,
understanding the importance of investing ample time when needed, and fostering open
communication to avoid underestimation of individual contributions.

In summary, the project exhibited a blend of commendable features and areas for
improvement, providing valuable insights into both technical and team management
aspects. The journey encompassed challenges, iterative improvements, and a wealth of
experiential learning that would undeniably shape future endeavors in a similar domain.

19

=) () vt/ smecpyron

© Code I Pullrequests 1 @ Actions [0 Projects [Wii O Searity L Insights 3 Settings

S simmer-python suic

focked fom a1 s

P main +

Your main branch isn't protected

This branch is 34 commits ahead. 20 commits behind ian612main.

13 branches

Appendix A: Code

2P0 OwWeh 0 v

Dot Gototie adatie- ([

Mechatronics robot simulator written in
python

Protect thisbranch

1 Contribute G Syncfork ~

Yk d |~

About

@ siatys woringpatcefiter code aded e O © owatchng
¥ 4o

W .vscode gyroscope sensor 4 months ago

- e e

- scipts working partce fiter code added sogo | Cosssnevrdems

D otnore PR
Packages

O ucense jcense Updates 9

D ReAOMEmS
D bockey
D configpy
D w2y
D mazepy
D robotsy
D simmerpy

D utitiespy

READMEmd

OMEm3

refactor config il remove unneeded

su er movement 2montns ago

3dding clean code and utils for movement

2months ago

Suggested workflows

efactor config file.remove unnseded csv 3 months ago
2dd emergency stop function 3 months age
months ago

refactor config file remove unneeded c nonths sgo
2

“This fileis part of SimMeR. an educational mechatronics robotics simulator. Initial development funded by the
University of Toronto MIE Department. Copyright (C) 2023 lan G. Bennett

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero Genera

Languages

® python 000%

*

7 sw 0

Python Package using Configure

Anacond:

SLSA Generic
generator

Contigue

The Code can be found here: https://github.com/ashrafya/simmer-python

+

(c]

=]
nel@Q

20

https://github.com/ashrafya/simmer-python

