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Abstract

Multi-Robot Task Allocation (MRTA) presents a significant challenge in the context of trajectory

planning for robotic applications, with its inherently complex and NP-Hard nature. This research

focuses on solving the MRTA problem in urban search missions, where the objective is to locate

lost individuals using a Multi-Robot System (MRS). To achieve this, the research introduces a

foundational lost person model that overlays a probabilistic distribution on a detailed urban map.

This model informs the generation of coordinated, computationally efficient trajectories for each

robot in the MRS, facilitating optimal task allocation within the search space. The study proposes

a Clustered Contract Net Protocol (CNP) Task Allocation Algorithm, where robots are assigned

to clusters of tasks rather than individual tasks, promoting area-based searches. The algorithm's

approach results in improved search efficiency, enhanced task coordination, and scalability,

making it suitable for dynamic urban environments. The research also explores an augmented

approach with a frustration index, which helps reduce redundancy and improve task allocation by

aligning robots with areas of similar density. The findings from extensive simulations across nine

cities demonstrate a high success rate in locating lost persons. The Clustered CNP Task

Allocation Algorithm significantly outperforms previous methods, reducing search times and

increasing coverage. The research concludes with a discussion on scalability, robustness, and

future directions for refining the algorithm, emphasizing the potential of MRS for search and

rescue operations in urban settings.
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Introduction

Trajectory planning and updating in the context of robotic applications represent fundamental

challenges that extend across diverse domains within robotics [1]. One of the major areas of

research in the field of robot motion and trajectory planning, due to its relevance to real world

problems, is the Multi-Robot Task Allocation (MRTA) problem. This problem is characterized

by the challenge of assigning particular tasks, from a larger set of tasks, to all robots in the MRS

such that the success of a larger and more complex objective is optimized [2]. Upon closer

examination of the problem, if we consider a set of Robots R, set of tasks T and attempt to assign

the T to R while attempting to minimize the time it will take to complete all the tasks, this

problem presents itself as being NP-Hard [2].

This research aims to coordinate a Multi-Robot System (MRS) for Urban Search missions,

specifically aiming to locate lost individuals. Leveraging a foundational lost person model, the

primary objective is to generate coordinated, computationally efficient and optimal trajectories

for each robot in a Multi-Robot System over an urban search space. Furthermore, as the model

incorporates real-time updates, the research focuses on generating updated trajectories for the

Multi-Robot System to maximize the likelihood of successfully locating the lost person. The lost

person's model will provide a detailed map of the urban space overlayed with the probabilistic

distribution of the position of the lost person, constraining the scope of this research to an area

coverage problem enveloped in a task allocation problem.

Research Objectives

Key elements of Multi-Robots Systems used in Search and Rescue (SAR) operations encompass

collaborative mapping and situational assessment [3], distributed and cooperative area coverage

[4] and cooperative search [5]. In a significant portion of the existing SAR literature, a

centralized approach is taken toward task allocation [6]. However, this thesis will focus on

exploring distributed task allocation algorithms which have the general advantage of enhanced

robustness in challenging environments prone to experience agent loss or have unstable

communication with the central decision making node. A potential decentralized algorithm that

would work well for this thesis is a market-based generic algorithm which relies on utility

functions, quantifying each robot’s fitness for specific search tasks modelled as trajectories [7].
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Additionally, path planning and area coverage algorithms are primarily concerned with the shape

of the survey area; nonetheless, a number of other key variables will be considered such as the

environmental conditions and importantly the probability of failure to assess the effectiveness of

the solution.

Methodology

This research will involve working with a Multi-Robot System and attempt to locate a missing

individual in an urban environment using a decentralized search algorithm. The algorithm used

in this research will utilize a market-based approach in an attempt to optimally calculate

trajectories and update trajectories as new information becomes available in the lost person’s

model for each robot in the system [6]. The research will include modelling and simulating a

Multi-Robot System and creating a model of the market-based approach algorithm. The primary

objective will be to analyze the success rate of finding the lost person. Time permitting, next

steps for the thesis will be to perform a complexity analysis against an increase in the number of

robots, task allocation schedule depth and search area.

Urban Search for a Heterogeneous Multi-Robot System

This section focuses on attempting to understand the Urban Search and Rescue (USAR) problem

in a deeper context. With this context at hand, the problem will be more easily understood as a

task allocation problem. The Urban Search and Rescue problem lends itself a lot from the

Wilderness Search and Rescue (WiSAR) problem. The USAR problem at a high level can be

thought of as a WiSAR problem with more constraints placed on the search space which

manifests itself in a more structured urban environment relative to the pseudo-unstructured

environment nature of wilderness environments.

The Target

As framed earlier, the current problem is to identify a lost individual, often referred to as the

target in this thesis, in an urban environment. In such a situation, there is little but extremely

valuable information at hand typically. The key piece of information to initiate the search is the
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last known position (LKP) of the target. This can help confine the search space depending on

how recent this position was. Moreover, information about the target’s demographic data is also

available and relevant to help categorize the target into expected behaviour patterns. A key piece

of insight is that the LKP is the last true known position of the target as any more information

about the target’s position will promptly conclude the search and label it a success.

As it can be seen in the literature, it is very important to spend time gathering information

about the environment as this allows the particular search and rescue (SAR) application to

perform better as it is the foundation of the planning process [8]. In a similar fashion, search

agents have access to the static environment data before the search begins. Additionally, search

agents also have to collect information to develop a better understanding about the environment

around them and hence be able to make more informed decisions. Based on all the above

collected information, a lost person’s model can be created which can generate a probabilistic

distribution of the expected behaviour and consequential motion of the target.

Search Resources

In a search and rescue mission, both Unmanned Aerial Vehicles (UAVs) and unmanned Ground

Vehicles (UGVs) can be utilized depending on the specific challenges and needs of the situation.

Although both UAVs and UGVs present their own strengths in SAR operations, employing a

heterogeneous multi-robot system made up of UAVs and UGVs has shown to be very effective in

both USAR [9] and WiSAR operations [10].

Search Tasks

In order to inform the movement of a heterogeneous multi-robot system a foundational

understanding of the target’s movement is provided by the lost person’s model. By adjusting the

appropriate parameters of such a model, the expected behaviour of the target can be decently

approximated. Under the assumption that such a model is an acceptable approximation of the

target, its results can be leveraged to advise the search path planning of the heterogeneous MRS.

Notably, the lost person’s model can be used to generate tasks to be executed by the

heterogeneous MRS. It is important to reference this key insight to understand the following

discussions regarding the multi-robot task allocation problem.
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Defining the Multi Robot Task Allocation Problem

To recap, the problem of assigning a set of tasks to a Multi-Robot System while attempting to

minimize the time taken to complete all required tasks is NP-Hard [2].Resultantly, numerous

alternative methodologies have been suggested over the years. Before exploring any of these

techniques in further detail, it is important to understand how the multi-robot task allocation

(MRTA) problem can be defined and consequently be modelled as per the nature of our problem.

For MRTA setups, there are a few key actors in the general case. For the problem

mentioned above, the key actors needed can be defined as follows:

1. 𝑅:  𝑀𝑜𝑏𝑖𝑙𝑒 𝑅𝑜𝑏𝑜𝑡𝑠 𝑟
𝑖
:  {𝑖 = 1,  2,  ... 𝑛}

2. 𝑇:  𝑇𝑎𝑠𝑘𝑠 𝑡
𝑗
:  {𝑗 = 1,  2,  ... 𝑛}

3. 𝐶𝑜𝑠𝑡:  𝐴 𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡𝑠' 𝑐𝑜𝑠𝑡𝑠.  𝑐
𝑖𝑗

 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑟𝑜𝑏𝑜𝑡 𝑟
𝑖
 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑡𝑎𝑠𝑘 𝑡

𝑗

For the most generalized case, the problem collapses into finding the most optimal assignment of

tasks to a subset of robots which will attempt to accomplish these tasks [11].𝑇 𝑅

𝐴: 𝑇 → 𝑅  (1)

Additionally, we will be exploring market-based approaches and it is important to understand the

slightly augmented formulation of such a problem. In market-based approaches, each robot 𝑟 ∈ 𝑅

can perform a task or a bundle of tasks , where each bundle is a subset of the tasks𝑡 ∈ 𝑇 𝑑 ∈ 𝐷

available . Each robot, depending on the problem constraints, then may bid on either a𝐷 ⊆ 𝑇

single task or a bundle of tasks, or respectively.𝑏
𝑟
(𝑡) 𝑏

𝑟
(𝑑)

In the case that a robot can bid on a bundle of tasks, the cost of each bundle can simply be

calculated as follows:

𝑏
𝑟
(𝑑) =  

𝑖=1

𝑚

∑ 𝑐
𝑟𝑖

   (𝑖 ∈ 𝐷)   (2)

In the equation above, is the task number and is the cost of the task i performed by robot r,𝑖 𝑐
𝑟𝑖

and m is the total number of tasks present in this bundle of tasks.
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Modelling the MRTA Problem

The MRTA problem can be modelled in many different ways and the following subsections will

take a deeper dive into some of the leading modelling approaches.

Optimal Assignment Problem (OAP)

The MRTA can be modelled as an Optimal Assignment Problem (OAP) where the goal is to

assign the robots to a set of tasks in such a manner that the profit made by the assignment𝑅 𝑇

combination is maximized [13]. The objective to be maximized therefore is the matrix as𝑃(𝑟𝑡)

shown and discussed below in equation (3). As is the case with most real world applications of

the MRTA problem, the number of robots and the number of tasks is not the same, however, this

problem can be overcome by creating virtual tasks or virtual robots with zero profitability such

that the number of robots and tasks equalizes. Due to this variation, it can be assumed that the

sets and have the same size .𝑅 𝑇 𝑁

The OAP problem can mathematically be stated as: given an matrix , find the𝑛 × 𝑛 𝑃

permutation of 1, 2, 3, … n such that the following is maximized:α

𝑖=1

𝑛

∑ 𝑃(𝑟
𝑖
𝑡

α(𝑖)
)      (3)

Such a task allocation matching between robots and tasks is called an Optimal Assignment.𝑅 𝑇

Alliance Efficiency Problem

The alliance algorithm, initially developed to tackle NP problems [14], has undergone

generalization for addressing a wide range of mono-objective optimization issues [15]. The

Alliance algorithm can be formulated as both a Multi-Objective and a Mono-Objective Alliance

algorithm [16]. The Algorithm has been inspired by the idea of multiple tribes working together

to achieve a common goal in an environment that will provide them with the resources they need

to survive. There are two key features that characterize each tribe, namely, the skills of each tribe

and the resources they need to survive. In our case, each tribe can either be represented by a

single robot or by a group of robots attempting to complete a singular task or a bundle of tasks .𝐷

The key idea of tribes becomes helpful when the tribes form alliances by pooling their skills in

an attempt to achieve the common goal. This approach can be especially helpful for a
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heterogenous MRS where the intrinsic contrast in the robots’ abilities becomes a beneficial

feature to complete the task rather than a potential drawback. To formulate, a tribe can be𝑡

represented as a tuple composed of the following [17]:

● A point of the solution space to represent the location of the tribe 𝑥
𝑡

● A set of skills . These skills depend on the value of of𝑠
𝑡
 =  {𝑠

𝑡,1
,  𝑠

𝑡,2
,  𝑠

𝑡,3
,  ...  ,  𝑠

𝑡,𝑁
} 𝑁

𝑠

the objective function evaluated at𝑆
𝑖

𝑥
𝑖

𝑠
𝑡,𝑖

 =  𝑆
𝑖
(𝑥

𝑡
)           ∀  𝑖 = 1,  2,  ...  𝑁

𝑠
        (4)

● A set of resource demands that depends on the constraint𝑟
𝑡
 =  𝑟

𝑡,1
,  𝑟

𝑡,2
,  ...  ,  𝑟

𝑡,𝑁
𝑅

 𝑁
𝑅

functions:

𝑟
𝑡,𝑖

 =  𝑅
𝑖
(𝑥

𝑡
)           ∀  𝑖 = 1,  2,  ...  𝑁

𝑅
        (5)

● An alliance vector that contains the IDs of all the tribes that are allied to the tribe . It is𝑡

important to note that initially, every alliance is made up of a single tribe.

Discrete Fair Division Problem

The MRTA problem can also be formulated as a fair division problem [18]. The idea behind this

approach is quite simple, given that there are a finite number of tasks and a finite number of

robots, the goal is to divide up the tasks in such a way that the utility or the work being done by

each robot is according to its fair share. A fair share for each robot can be characterized by the

worth of the tasks being performed by the robot. Given a set of robots and a set of tasks worth𝑁

, the fair share to be received by a homogenous group of robots can be concluded to be of𝑉 1/𝑁

the value assigned to the complete set of tasks. The fair share for a robot in a heterogeneous𝑉

MRS will require mappings between different robot types to determine a fair share for each

robot.

Furthermore, the Fair division approach can be further subdivided into two classes

depending on how a task has been defined for the specific problem:

1. Indivisible Tasks: Such tasks have to be given entirely to a single robot and can be

considered to be atomic in nature.
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2. Divisible Tasks: Such tasks can be divided into smaller tasks and such a division can

result in a homogenous or heterogenous subset of tasks. Accordingly, the subset of these

tasks can be given to a homogenous or a heterogeneous MRS.

At closer inspection of the literature, two different schemes emerge for the Fair Division

problem. The first method is called the method of sealed bids [19]. The robots submit a bid for

each task and the bids remain private until the end of the bidding period. Once the bidding period

has ended, the auctioneer assesses the bids and assigns a winner based on the submitted bids. The

winner of this auction will be the highest bid price based on the auction criteria.

The method of markers is the second scheme used for the Fair Division problem [20].

This method is particularly useful when the tasks at hand can be arranged in a linear fashion, this

situation typically arises when there is a large number of small tasks that need to be assigned

amongst a smaller set of robots. The robots voice their opinion by placing markers𝑁 𝑁 − 1

based on their assessment of what the fair share is and consent to take any segment of tasks that

lie between any pair of their own consecutive markers. After this is complete, the robot with the

leftmost consecutive markers is assigned the first segment and all its other markers are removed.

This process is then repeated until all the robots receive what they perceive to be a fair share for

themselves.

Just as a short note, the Fair Division Problem is a well studied problem and is known as

the cake cutting problem when the resource is heterogeneous and is infinitely divisible [21,𝑅

22]. A key concept to take away from the above discussion is the concept of Envy-Freeness. The

concept of Envy-Freeness can be considered the epitome of fairness as put by [23].

Envy-Freeness requires that every agent prefers their own bundle of tasks more than that of any

other agent.

MRTA Taxonomy

The following subsections describe MRTA problem approaches and the second builds on top of

this by including a class that captures the interdependence of tasks.
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Gerkey and Matarić

This section will take a deeper look into the taxonomy of MRTA as categorized by Gerkey and

Matarić [24]. The Multi-Robot Task Allocation problems were categorized along three axes. The

first Axis distinguishes between robots that can perform Single-Tasks (ST) or Multiple-Tasks

(MT) at the same time. The second axis distinguishes between tasks that are characterized as

Single Robot (SR) tasks or Multi Robot (MR) tasks. This axis helps identify tasks that only

require a single robot to complete them or multiple robots to complete the task, intrinsically

capturing the varying complexity of tasks. The third axis deals with Instantaneous Assignment

(IA) or time-extended assignment (TA). This axis captures the scheduling complexity of tasks,

IA tasks can be allocated without any consideration to future scheduling and TA tasks on the

other hand must be assigned to a robot which must also follow a schedule according to which

these tasks should be executed. Figure 1 presents a visual portrayal of the above taxonomy

presented by Gerkey and Matarić [24, 25].

Figure 1: Visual Representation of the Gerkey and Matarić’s MRTA taxonomy, from [25]

In presenting their taxonomy, Gerkey and Matarić noted that the ST-SR-IA problem is an optimal

assignment problem in combinatorial optimization and can be solved in polynomial time, unlike

the other problems which are all strictly NP-Hard [25]. They outline the ST-SR-TA problem,

framing it as a variant of a machine scheduling challenge that entails devising task schedules for

individual robots [25]. The ST-MR-IA problem, recognized as more challenging, is alternatively

referred to as coalition formation. It involves organizing robots into distinct sub-teams without

overlap for task execution, sharing mathematical similarities with the set-partitioning problem in
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combinatorial optimization [25]. And similarly, the MT-SR-IA problem is equivalent with the

roles reversed between robots and tasks [25]. The ST-MR-TA problem is once again equivalent

to the MT-SR-TA problem with the roles of tasks and robots reversed and involves both coalition

forming and scheduling [25]. Moreover, to tackle the MT-MR-IA problem, the goal is to

compute a tribe or coalition of robots to perform each task and it allows for a robot to be a part of

more than one coalition [25]. Ultimately, the MT-MR-TA problem is an exceptionally

challenging problem and can be understood as a scheduling problem with multipurpose machines

and multiprocessor tasks [25].

Interdependence

A key limitation in the taxonomy provided by Gerkey and Matarić, as they pointed out, is that

the interrelated task utilities and constraints are not captured in their taxonomy [25]. It is

important to consider this since interrelatedness of tasks and utilities is especially relevant to

real-world problems since it is akin to a robot routing problem. The utility function of each task

assigned to a robot is related to the routing cost. If tasks are primarily spatially distributed but

otherwise homogeneous, as is often the case with robot routing problems, in such domains, there

is a harmony between tasks that are closer together. In such a case the utility of a robot that

performs tasks that are spatially nearby is not equal to the sum of the utilities for performing

these tasks individually [25]. For this reason Korsah et al have extended the framework

presented by Gerkey and Matarić by adding a categorical variable with four unique values to

represent the interdependence of tasks. The following subsections will briefly define and outline

what these categories are.

● No Dependencies (ND): Such tasks do not affect the utility of other tasks or agents in the

system [25].

● In-Schedule Dependencies (ID): Such tasks have agent-task utilities that have

intra-schedule dependencies. Therefore, the tasks depend on the task performed by the

agent and the other tasks also present within the agent’s schedule [25]

● Cross-Schedule Dependencies (XD): Such tasks have agent-task utilities that have

inter-schedule dependencies. Therefore, the effective utility of an agent or task depends

on both its own schedule and the schedule of other agent-task pairs in the system [25].
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● Complex Dependencies (CD): Such tasks have agent-task utilities that have

inter-schedule dependencies specifically for complex tasks. Complex tasks can be

decomposed into subtasks that may be multiagent-allocatable subtasks. Therefore, the

utility of an agent depends on both the schedule of other agents in the system and the task

decomposition that is chosen for the complex task.

Below is a visualization of the four possible values of the interdependence class presented by

Korsah et al [25].

Figure 2: A visualization of the four categories for the interdependence class. Shaded circles

represent tasks, solid lines represent agent routes and arrows represent constraints. The multiple

colours or superimposed routes in the rightmost figure illustrate multiple task decompositions of

complex tasks. From[25]

MRTA Solution Approaches

Two of the most commonly used MRTA approaches will be explored in the following

subsections. Namely optimization based approaches including deterministic, stochastic and

heuristic approaches and market based approaches after which the pros and cons of market-based

approaches will be discussed.

Optimization Based Approaches

Optimization deals with attempting to find the optimal solution to a problem in a solution space

given restrictions placed by solution constraints. The optimal solution is then chosen based on a

criteria which informs the objective function that is to be maximized, quantifying the goal of the
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system. A range of optimization approaches can be explored, and the appropriate approach can

be selected based on the context and complexity of the problem. Optimization based approaches

are distinguished by their ability to explore new areas in the search space due to the inherent

randomness of algorithmic variables and can benefit from noisy data as this may allow them to

explore novel search spaces and consequently solutions [27, 28].

On the other hand, deterministic approaches follow a rigid path, always producing the

same outputs with the same inputs, giving them a repeatable nature. Deterministic methods

include numerical methods, classical methods such as gradient and hessian based approaches

along with quadratic programming among others [20]. Graph based methods such as uninformed

and informed search are also deterministic in nature [20].

Stochastic techniques inherently have randomness associated with their approach and

these approaches can largely be classified into trajectory-based and population-based approaches.

Simulated annealing is a metaheuristic algorithm and uses a single agent to search the space.

Through the simulated annealing process, good and improving moves are accepted while less

favorable moves have a much lower chance of being accepted. This mechanism will slowly

favour the survival of the fittest and explore favorable solutions spaces.

Conversely, population based algorithms such as ant colony optimization and particle

swarm optimization algorithms use multiple agents to help search the space collectively and

leverage their large numbers. Population based algorithms have also been used for various

MRTA problems. For example, the genetic algorithm used in [29] was capable of tracking a

group of targets rather than a single target. Moreover, the genetic algorithm has also been used to

provide a solution for the time extended task allocation of multi-robot systems in a disaster

scenario [30]. Hybrid optimization approaches were also used to tackle the task allocation

problem. In [31], a Simultaneous Task Allocation and Motion Coordination (STAMC) algorithm

was proposed and explored the simulated annealing, ant colonization and an auction algorithm

for task allocation in the STAMC approach. It was shown that the makespans achieved from all

three algorithms while used in combination with STAMC were comparable to each other [31].

In [32], trajectory-based and population-based metaheuristics were introduced and

extensively evaluated across various test scenarios. The study shows that such approaches are

effective in tackling the complex and often heavily constrained nature of MRS applications as
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most real-world applications require a team of heterogeneous robots to successfully achieve a

goal. Given that real-world MRS applications often involve diverse robots with varying

capabilities, the proposed approach in [32] prioritized accounting for robot heterogeneity. Four

key features—robot velocity, capabilities, energy level, and aging factor (efficiency)—were

incorporated during the implementation phase and integrated into the traveling salesman model

(TSP) [32]. Consequently, additional features—task requirements and minimum time needed to

complete tasks—were introduced to enhance the representation of cities/tasks in the formulation

[32].

Market Based Approaches

The market based approach is an economically inspired idea which attempts to mimic and model

the free market by coordinating the activities between the tasks/goods and the robots/agents. This

approach is largely based on the idea of auctions to simulate the economically competitive

environment. The process of an auction can be described by the mechanism of trading rules, the

process of assigning goods and/or services to a set of bidders based on the submitted bids and

auction criteria. It is an intuitively simple method of allocating resources to the highest bidder

and this concept can be extended to the MRTA problem where the most qualified and the most fit

robots to perform a certain task will be able to submit the highest bid for a particular task.

Therefore, following through completely with this mechanism will result in all the tasks being

auctioned off or allocated between the set of Robots available.

Such an approach requires there to be communication between the robots and the tasks so

the robots can submit bids for the tasks based on their fitness and ability to complete them. The

negotiation process follows market theory principles, with the team aiming to optimize an

objective function based on the utilities of robots in performing specific tasks [33].

Auctions in general allow for competition of resources between different market players

and allows any interested party to indicate their interest in any number of resources available in

the auction. Auctions are a simple and intuitive method of allocating goods to interested parties

and there are multiple types of auctions that can achieve this goal. The types of auctions can

largely be divided into two categories, namely Simple-good auctions and Combinatorial

auctions. Simple auctions allow bidders to place bids on single items, however, combinatorial
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auctions allow bidders to place bids on a combination of items, called “packages”. In the coming

subsections some of the leading auction designs for the Multi-Robot Task Allocation problem are

discussed.

Contract Net Protocol (CNP)

The Contract Net Protocol is a task sharing mechanism for multiagent systems and allows for

autonomous competitive negotiation between agents through the use of contracts in the auction

space. Information can be distributed among agents using 3 channels[34]:

1. Nodes can request information directly from another node.

2. Nodes can broadcast information about a task.

3. Nodes can specify in their bids for a particular task what further information they need in

order to execute the task.

The CNP algorithm can be broken down into 4 stages which provides a high-level structure to

the interactions between the nodes, tasks and the coordination necessary to execute complex

tasks [34].

● Announcement stage:An agent is assigned to be the auctioneer and is given the task of

announcing the set of tasks that are available for bidding.

● Submission stage: Individual robots or agents can place bids on each of the tasks after

calculating their individual utility values based on their utility functions.

● Selection stage: This stage commences once the bids are received from all the interested

agents, at this point the auctioneer evaluates the bids based on the auction criteria in order

to determine the winner of each task

● Contract Stage: Once the auction criteria has been calculated the winning agent is

assigned the task at hand and the process continues to loop again until the set of tasks is

exhausted and completed.

As the keen eye will identify, the main disadvantage of this approach is that the tasks are

assigned to the robots/agents based on their individual self-interests. By extension, it can be

concluded that the final solution may be optimal locally for each of the robots/agents, however it

may or may not be the optimal for the complete multi-robot system as a whole [34]. An

illustration of the CNP stages can be found below in Figure 3:
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Figure 3: A visualization of the Contract Net Protocol (CNP) algorithm as shown by [14]

Trader-Bots

The Trader-bots approach also applies free market economy concepts for generating efficient and

robust multi-robot coordination behaviours via the underlying market-based task allocation

mechanism. The top layer of this approach is made up of trader bots which are assigned as a 1:1

ratio for each robot. Additional trading bots are also initialized for representing operators and

other resources in the environment as deemed necessary. Each trader in this approach has the

ability to negotiate and ensure that it is able to act in its self-interest by getting the best resources

or tasks that it needs and is able to make rational decisions while negotiating its contract [35].

The high level goal of this algorithm is to help ensure the completion of the tasks at hand while

also maximizing the utility of all the robots in the set. The main advantages of such an algorithm

is that it is self-organizing in nature, making it robust and adaptable to unknown environments

[35]. To ensure smooth organization and behaviour of the MRS, the Trader-Bots employ two

mechanisms, namely the subcontracts and transfers.
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● Subcontract: In such a contract the bidder agrees to complete a task for a certain price

and then agrees to report back to the seller once the task has been completed.

● Transfer: In this case, the right to perform the task entirely is sold to the bidder. The

bidder provides payment to the seller when it is awarded the contract through the transfer

and is consequently not required to report back to the seller once the task has been

completed.

Analysis of Market Based Approaches

This section will be dedicated to discussing the Pros and Cons of the Market Based approaches.

● Efficiency: Market based approaches are distinguished in their ability to capitalize on the

locality of information, and can produce very efficient solutions by leveraging both

centralized and decentralized elements of mechanism [36]. Market Based approaches

have been shown to provide efficient solutions using varying objective functions [36, 37].

● Robustness: Market based approaches have the advantage of all agents being capable of

making rational and self-interest oriented decisions as mentioned earlier. Due to this, it

allows market-based approaches to not be susceptible to single point failures. Therefore,

leveraging a decentralized paradigm can be made robust to several types of failures [36,

38].

● Scalability: The computational and communicational requirements of market-based

approaches usually do not become prohibitive and therefore allow for efficient solutions

to be computed even as the system scales [17]. Notably, market-based approaches scale

especially well in cases where large complex tasks can be decomposed into small tasks

that can be performed in parallel by smaller subsets of the robots [39].

● Adaptability: Market based approaches are usually capable of including new tasks into

the task space seamlessly by auctioning them as they are introduced into the system or as

they are generated by the agents themselves [39]. Additionally, market based approaches

can also be configured to operate in unknown and dynamic environments by allowing

agents to modify cost estimates of certain tasks overtime, and hence reallocating them to

a more suitable agent if necessary [40].

While market-based approaches offer advantages, their drawback lies in the informal design of

cost and revenue functions, as well as complexities in negotiation protocols and penalty schemes
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[41]. Additionally, in cases where a centralized approach is able to suffice, market based

approaches can often be more complicated to implement and may produce worse results as well

[41]. Similarly, when completely decentralized approaches can be taken, market based

approaches can be needlessly complicated in implementation and design on top of the additional

computational and communication requirements [41].

Problem Framework

As described earlier in this report, the research problem at hand is to find an efficient and

effective way to locate a lost person in an urban environment using a heterogeneous Multi-Robot

System. The following section will attempt to solidify the framework of this problem in addition

to clearly defining the problem scope.

A lost person can be defined as a mobile individual who does not have reliable

knowledge of their current urban environment and requires external support to navigate to a safe

location. Examples of an individual like this include an elderly person with dementia or a child

which is unfamiliar with the environment. It is important to reiterate that the scope of this

research is not designed to respond to a disaster situation such as a post earthquake lost person

search effort. However, the urgency and swiftness required to rapidly act on the scoped

non-disaster situation should not be underestimated. The objective of such a mobile target search

effort should be to locate the lost person as quickly as possible while maximizing the chance of

locating the lost person. It is important to appreciate the nuance of maximizing the chance of

locating the lost person as quickly as possible since it is important to locate the person as soon as

possible however not while significantly increasing the risk of failing to find the lost person at

all. Hence, the strategy proposed in this paper is cognizant of this nuance.

Both human and robot agents can be used to search for the lost person. This research as

mentioned above will be focused on developing a strategy for coordinating the robot agents.

Notably, information from human actors can be used to advise the coordination of the robot

agents by updating the weights of the lost person model. Adjustment will be explained in a later

section. Robot agents will be tasked with advising their movements based on the information

from the lost person’s model.
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Utilizing a multi-robot system is crucial due to the expansive nature of the problem at

hand. By employing multiple robots, we not only enhance our ability to cover a larger area

efficiently but also significantly elevate the probability of successfully locating the lost

individual, thus maximizing the effectiveness of the search and rescue operation.

Lost Person’s Model
The lost person model is a model developed by Cameron Haigh from the CIM Lab. The model

works to model the movement of the lost person using a point cloud method. This model uses the

environmental factors such as time of day, city structure and biographic information about the

lost person including their Last Known Position (LKP) to tune the model to closely model the

movement of the lost person. The model uses a point cloud method to model the target and a

stochastic approach to calculate the expected behaviour of each of these points. A higher density

of points in a certain location points towards there being a higher likelihood of the lost person

being in the surrounding area according to the Lost Person model and vice versa. This idea is the

key piece of information extracted from the Lost Person Model. Notably, the Lost Person model

is able to adapt to suburban search areas as well. Suburban search areas present an additional

layer of complexity where the Lost Peron may cease to follow paved roads or paths and wander

off into large fields. Moreover, the model’s output data resolution can be modified, however it is

chosen to output data at the granularity of every minute.
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Figure 4: Visualization of the Lost Person model output

Robot Descriptors
While picking the robot actors, it is important to understand the tradeoffs between choosing an

Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV). UGVs take

advantage of the urban road network of the urban/suburban area, however their speed and

mobility can be majorly affected by ground factors such as car traffic and human safety

considerations. This key drawback can limit the search capacity of UGVs and limit the rate at

which the search operation can expand to external factors out of their control. On the other hand,

UAVs can circumnavigate this problem since traffic and human safety constraints are much more

relaxed. This would allow UAVs to rapidly expand their search area and help significantly

increase the chances of finding the Lost Person. Additionally, as mentioned earlier, the lost

person search could take place in a suburban environment where the lost person would have the

chance to veer off dedicated roads and pathways into fields and large unstructured areas. UAVs

would be instrumental in aiding the search in such scenarios which is why they were chosen to

be the primary robot agent for this thesis.
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Unmanned Ground Vehicles (UGV) Unmanned Aerial Vehicles (UAV)

Easier to detect Lost Person due to closer

proximity on the ground

Challenging to detect Lost person from a high

altitude

Search speed limited by ground traffic and

human safety factors

Search speed in bounded by the UAVs motor

controls

Strictly requires paved surfaces to navigate Can perform search over unstructured areas

such as fields and farms

Largely unaffected to weather and

environmental conditions

Susceptible to weather and environmental

conditions, namely precipitation and high

wind

Table 1: Discussing the Advantages (Green) and Disadvantages (Red) between UGVs and UAVs

Pseudo Iso-Probability curves
Iso-probability curves encompass the target's Last Known Position (LKP) and indicate the

maximum distance achievable by the slowest Pth percentile target in any direction after a

specific duration [43]. Iso-probability curves are not used as the defining feature of this

algorithm, rather they are used as an augmenting feature to advise the search trajectories of the

search agents after information from the Lost Person model has been exhausted after one cycle.

The Pseudo-Iso-Probability curve is defined by the circular motion the search agent adopts in

order to search for the target. The reason why it is labelled the Pseudo-Iso-Probability curve is

because it assumes the pseudo-correct assumption that the robot is at the LKP position of the

target and performs an iso-probability curve search motion of the 99th percentile of the target

location. The Iso-Probability curve in this curve grows in radius as time passes to account for the

fact that it is a mobile target and the 99th percentile contour of where the target could be present

would grow with time as well.
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Figure 5: Visualization of the Pseudo-Iso-Probability trajectory as it grows with time by making

concentric circles with a growing radius. The y and x axis are the x and y coordinates of the

trajectory [43]

Targets and Actors

While extracting data from the Lost Person model, the data points along with the search agents

must be classified into functional groups in order to set up a robust and effective simulation

environment.

Task

The data received from the Lost Person model is temporal in nature and for the purpose of this

paper, simulations using 1000 points were used. Each of those 1000 points were available as x

and y coordinates over a period of 12 hours but target pose information only being available at

the granularity of every minute. Each point was defined as a Task which must be completed by

the search agents. Furthermore, a task would be classified as completed when a search agent

robot is within a certain detection threshold of the Task.

Cluster

A Cluster is defined as a group of N tasks. The grouping is done by grouping the nearest

neighbours together. For each cluster, the centroid of the cluster is also defined and the area

coverage of each cluster is also defined. Clustering provides the benefit of grouping together
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certain Tasks and allowing a more efficient and effective distribution of search agents over the

search area. Specifically, clustered Tasks allow a single search agent to effectively focus on N

tasks rather than assigning N robots to search over N tasks. The reason this would not be optimal

is because these tasks are closest to each other in proximity and there will be a larger time the

search agents spend moving between tasks than focusing on performing the search at the

requisite areas.

Robot
The search agent is defined as a robot. Each robot can have unique characteristics such as its

maximum velocity and binary detection threshold. This allows for a heterogeneous system of

search robots to be involved in the search. Robots are mobile UAVs that have direct

communication with a centralized node to help coordinate the Multi-Robot System in the most

effective manner to ensure the successful search of the Lost Person.

Target
The Target defined for each experiment is chosen at random from amongst the total tasks or lost

person’s simulated in the Lost Person model. The motion of the target, fittingly, is defined by the

Lost Person model. Once a random target is picked, the pose of the target is masked from the

search agent’s, effectively reducing the number of available Tasks to search to become N-1.

Where N is the total number of lost persons simulated by the Lost Person model.
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Figure 6: Visualization of the MRS Task Allocation Simulation

Identifying the Robot Taxonomy Region
We can identify the taxonomy that this problem belongs to, using the Gerkey and Mataic matrix.

This identification will help us with understanding the core applications of this new method. As

discussed earlier, it only requires a single robot to perform a single task and due to the nature of

the tasks, the robots can only perform a single task at any given moment. It is impossible for a

robot to be present at more than one location at a given moment, therefore we require a single

robot to be assigned to a single task at any given moment. Furthermore, the proposed method in

this paper classifies the tasks as being part of the instantaneous class of task assignment. The

output of the Lost Person model is not locally calculated by each robot independently, rather the

output is communicated to all the robots from a central node of communication. The reason for

this centralized mode of communication is to ensure that the proposed method has the flexibility

to account for any new information received from human search agents (i.e. any information

collected from agents other than the UAVs).

Notably, the tasks do not have an interdependent nature, however the tasks are not

mutually independent given the very nature of how these tasks are generated and processed. To
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complete any arbitrary task, no other task needs to be completed however, due to the stochastic

nature of the way the task points are created, it is expected that tasks will be found in much

higher densities closer to the global mean of the task distribution and the density of tasks will be

lower as we deviate from the global mean. The proposed method aims to exploit this relationship

between tasks, however, for the purpose of this paper the tasks can be classified as not having

any dependencies between each other.

Multi Robot Task Allocation Problem Taxonomy

Task Type Single Robot (SR)

Robot Type Single-Task (ST)

Allocation Type Instantaneous Allocation (IA)

Interdependence No Dependance (ND)

Table 2: Multi Robot Task Allocation Problem Taxonomical Classification

Defining as an Alliance Efficiency Problem

The problem can be defined as an Alliance Efficiency problem with a mono-objective

optimization issue. Its inspiration stems from the concept of diverse tribes collaborating to

achieve a shared objective within an environment that sustains them with necessary resources.

Each tribe, represented by a single robot, is characterized by its unique set of skills and resource

requirements. We can define tasks as resources that robots require to survive, hence each robot is

required to complete tasks in order to “survive”. The Alliance Efficiency formulation becomes

beneficial when we consider the case where the amount of tasks available are less than the

number of robots to help complete these tasks. In this case, we can create an Alliance which𝐴
𝑓

is the final alliance before a new cycle of the control loop is executed. This final alliance will

grow in size as the number of robots not assigned to a Task generated by the Lost Person model

increases. In order to help provide resources to all tribes in this alliance, each robot which is a
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part of this alliance will follow the pseudo-iso-probability trajectories described earlier to collect

their resources.

Contract Net Protocol (CNP)

The proposed method in this paper will be using the Contract Net Protocol (CNP) method as the

task sharing mechanism for multiagent systems to allow for autonomous competitive negotiation

between agents through the use of contracts in the auction space. To recap, information can be

distributed among agents using 3 channels [34]:

1. Nodes can request information directly from another node.

2. Nodes can broadcast information about a task.

3. Nodes can specify in their bids for a particular task what further information they need in

order to execute the task.

The CNP algorithm can be broken down into 4 stages which provides a high-level structure to

the interactions between the nodes and tasks and a detailed discussion of this can be found earlier

in this paper.

Experimental Setup

Some of the key metrics to be extracted from this study is to understand how successful each

method is and to also understand how swift each method is in delivering a successful search of

the Lost Person. The importance of both of these key metrics cannot be understated. In addition

to both these key metrics, it is important to evaluate the robustness of these methods. Therefore,

in order to evaluate the robustness of these methods, 9 cities across Ontario were chosen to

represent 3 classes of urban centers:

1. Large Metropolitan Cities

2. Mid-size suburban Town/City

3. Small Rural Town

The cities were classified into each of the 3 different bins by looking at the population of each of

these cities. Table 3 below shows a breakdown of how these cities were selected and which bins

they have been classified into. By testing the efficacy of the proposed method on different urban
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areas we can gain a much more nuanced understanding of the performance and robustness of the

proposed method.

Class City Population

Large Metropolitan City Toronto 2,930,000

Ottawa 995,000

Mississauga 830,000

Mid-size suburban City Oakville 210,000

London 400,000

Kitchener 240,000

Small Rural Town Belleville 50,000

Cobourg 19,500

Orillia 31,000

Table 3: City classification and populations

Methodologies

This section will introduce the three methodologies analyzed in this paper and present and

analyze experimental results from each of them.

Tracking Agents

Before discussing how each method works, it is important to understand how each Task and

Cluster is classified throughout the lifecycle of the algorithm. An appreciation of the internal

bookkeeping of the algorithm will permit a deeper understanding of the methods proposed.
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All Tasks and Clusters are classified as at least one of the following throughout the

lifecycle of each method mentioned below:

● Unassigned: An item which has not been assigned to be searched by a search agent.

● Assigned: An item which has not been assigned to be searched by a search agent.

● Complete: An item which has been searched by a search agent.

● Incomplete: An item which is currently being searched by a search agent

Furthermore, each robot can be classified as assigned or unassigned:

● Unassigned: A robot which has not been assigned an item (Task, Cluster)which it is

tasked with searching.

● Assigned: A robot which has been assigned an item (Task, Cluster)which it is tasked with

searching.

Closest Task Completion (Baseline)
The Baseline method was chosen to provide a foundational lower bound to understand how well

we can expect the problem to be solved without using any deep reasoning. The basic mechanism

of this method works by using the simple concept of assigning available search agents to the

closest available Task. Similar to the latter methods, the baseline method functions in a cyclical

method. A single cycle is characterized by the exhaustion of all available tasks. All available

tasks are deemed exhausted when there are no more tasks left to be assigned (i.e. unassigned

tasks). Once this happens, a new cycle of the algorithm is started where all tasks are classified as

incomplete, hence, there are no complete tasks either. Moreover, the incomplete tasks at the end

of the previous cycle are classified as assigned tasks and the remaining tasks are flagged as

unassigned. The algorithm continues to function until either the Lost Person (i.e. Target Task) is

located successfully or the search termination threshold of 12 hours has been reached. The scope

of this research was to successfully and rapidly locate the Lost Person, hence the scope of the

search was limited to 12 hours since the LKP of the Lost Person.

As seen below in Figure 7, the success rate of using the baseline method was quite

unsatisfactory and would result in most of the search attempts ending in a failure. The highest

rate of success was seen when using 100 robots for the search task and the success rate can be

seen to steadily decrease as the number of robots decreases. The figure below is the culmination
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of a total of 900 simulations and is able to provide a high level overview of the performance of

the Closest Distance Method. This performance was expected from the above method since it

does not take advantage of the inherent structure built into the problem as we can leverage

information from the Lost Person model to characterize areas of high likelihood and areas of

lower likelihood and assign search resources appropriately.

Figure 7: Success rate of using the Closest Distance method across cities of all sizes using a

varying number of robots.

Looking deeper at the results, unique trends can be uncovered with regards to the performance of

the method on cities of different scales. Figures 8 till Figue 10 illustrate these results.

Figure 8: Success rate of using the Closest Distance method across Large cities using a varying

number of robots.
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Figure 9: Success rate of using the Closest Distance method across Medium size cities using a

varying number of robots.

Figure 10: Success rate of using the Closest Distance method across Small size cities using a

varying number of robots.

Interestingly, the performance of the method was largely invariant to the number of

robots deployed in the search effort. This phenomenon can be explained by the fact that due to

the large size of the city it is unlikely that the Lost Person will be found after a shorter time

threshold than a smaller city. The reason can be explained to be that for a city with a large area,

each robot has a larger area that it is effectively in charge of. Therefore, the most likely manner

in which the Lost Person is located is if the robot is fortunate enough to be in relatively close

proximity to the target. If not, then the robot is unable to locate the Lost Person.
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Furthermore, results from searching small cities are slightly paradoxical in nature. There

is a clear trend in between the success rate of the search and the number of robots used. The

success rate gradually goes down as the number of robots used in the search is reduced.

However, the low success rate of the method is a result of the fact that due to the fact that all the

tasks are clumped together in much closer proximity relative to larger cities, the robots are biased

towards searching areas that are present in the highest density of tasks. This bias creates a

window for the target task to potentially escape farther away from areas of high density and can

allow the target task to wander much farther away. Hence, the surprisingly low efficacy of this

method on smaller size cities. Moreover, the Closest Distance method has had the highest

success in medium sized cities as can be seen in the figures above.

Figure 11: Closest Distance Success Rate across all cities with varying number of robots
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Clustered CNP Task Allocation

This section will discuss the results and findings from the Clustered CNP (Contract Net Protocol)

algorithm which presents part of the main algorithm of this research. Figure 19 below shows a

visualization of the Clustered CNP Task Allocation Algorithm at a snapshot in time.

Figure 12: Visualization of the Clustered CNP Task Allocation Method Simulation
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Algorithm Description

Figure 13: Clustered CNP Task Allocation state diagram

This algorithm uses the CNP Task Allocation algorithm described earlier to coordinate tasks

between search agents and the framing has not been replicated here to prevent duplicate

descriptions.

As discussed earlier, at the start of the search operation all tasks are characterized into

four bins. Namely, assigned tasks, unassigned tasks, complete tasks and incomplete tasks.

Similarly, Clusters are created to help aid this method. The clusters are created by clustering

using the K-Nearest Neighbours approach and in the following experiments each cluster is made

up of 3 Tasks. Moving forward, each robot is assigned to a Cluster instead of a Task. The key

difference in the search task of the robot is now the robot has to search over a triangular area as

opposed to visiting a single coordinate. The task of searching over an area forces the robot to

generate complex trajectories as opposed to driving on a line to arrive from one Task to the next.

Similar to tasks, once a cluster is completely searched, the robot is assigned to search the next

closest Cluster. As one can predict, since searching large cluster areas requires a non-trivial

amount of search time, there will consequently be a non-trivial amount of time where the number

of clusters available to search is less than the number of search agents available (UAV robots). In

this case, the robots not assigned to search a cluster are tasked with following iso-probability

curves at their local coordinate. Since their location was advised by the Lost Person model, the

surplus robots follow a trajectory of growing concentric circles similar to Figure 5 at their
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current location until all clusters have been searched. Once all clusters have been searched, the

cycle is repeated until either the Lost Person is found or the cutoff time of 12 hours is reached.

Results

Due to the larger area cover of the Clustered CNP Task Allocation approach, the algorithm is

expected to outperform the Closest Distance approach mentioned earlier. The data below has

been collected by conducting 900 simulations over 9 cities and 10 simulations per each bin of

robot numbers for each city (i.e. 100, 90, 80, etc). As illustrated in Figure 14 below, the success

rate has drastically increased as the success rate of locating the Lost Person can be seen to be

nearly 80% successful even with only 30 robots over the search space of 9 cities of varying size.

The success rate of this method can be largely attributed to the fact that the robots now perform

searches over an area as opposed to focusing their search efforts on a narrow strip of land while

travelling from one task coordinate to the next. This mechanism allows the robots to take

advantage of the fact that there is a high probability of the Target Task being located in regions

with high Task density (i.e. smaller cluster sizes) and tasks the robot to search the space in

between tasks in this manner rather than only focusing on search from Task coordinate to the

next coordinate.

Figure 14: Success rate of using the Closest Distance method across cities of all sizes using a

varying number of robots.

Looking deeper at the results, unique trends can be uncovered with regards to the performance of

the Clustered CNP Task Allocation method on cities of different scales. Figures x-x+3 illustrate

these results.

33



Figure 15: Success rate of using the Clustered CNP Task Allocation method across Large cities

using a varying number of robots.

Figure 16: Success rate of using the Clustered CNP Task Allocation method across Large cities

using a varying number of robots.
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Figure 17: Success rate of using the Clustered CNP Task Allocation method across Large cities

using a varying number of robots.

As we can see from the graphs above, there is a significant increase in the performance of the

Clustered CNP Task Allocation algorithm relative to the Closest Distance method. All three

categories exhibit the behavior of locating the Lost Person with lower success as the number of

robots decreases. Additionally, as expected, smaller cities have a higher success rate of locating

the Lost Person relative to the medium and large urban centers. This shows that the method is

able to mitigate the bias present in the Closest Distance method described earlier.

Concludingly, this method is able to provide satisfactory results of successfully locating

the Lost Person up to as low as using 30 robots across cities of varying sizes. Figure 18 below

shows the performance results of the clustered CNP Task Allocation algorithm across all 9 cities.
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Figure 18: Clustered CNP Task Allocation Success Rate across all cities with varying number of

robots

Clustered CNP Task Allocation with Frustration Index
Similar to the Clustered Task Allocation method described above, the method presented in this

section is augmented with a frustration index associated with each robot to help assign the robot

to the best fit. The task assignment protocol is still dictated by CNP however, robots are now

able to be paired up with clusters that match their frustration index. A new variable is introduced

in this method, namely a frustration index which is associated with each robot and each cluster.

The idea behind the introduction of this new variable is that each robot will have a relaxed

constraint to be assigned to a specific area of the search space characterized by the density of

tasks in that area. Namely, some robots will be constrained to search high cluster density areas

and some robots will be tasked with searching lower cluster density areas. This will minimize the
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time robots spend commuting in between these areas and will consequently spend a higher

amount of time performing useful search and consequently not creating large windows for the

target task to escape from high cluster density areas to the search frontier where the presence of

search robots is highly sparse.

Each cluster has an associated dynamic frustration index calculated using the following

formula:

𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  𝐶𝑙𝑢𝑠𝑡𝑒𝑟'𝑠 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑚𝑎𝑝 𝑚𝑒𝑎𝑛
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑚𝑎𝑝 𝑚𝑒𝑎𝑛 𝑡𝑜 𝑚𝑎𝑝 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

The map mean is calculated using the average of all task coordinates. The map boundary is

defined while initializing the simulation and it is decided to be the farthest a task will travel from

the initial map mean. Furthermore, each robot is initialized with its frustration index at 0. Its

index grows as it searches more clusters and the robot frustration index is updated to be the

average frustration index of all clusters it has searched. Consequently, while assigning a robot to

its appropriate cluster, the 5 closest clusters measured using euclidean distance are chosen and

the robot is assigned to the cluster with the closest frustration index to itself. Ties are broken

randomly.

Figure 19: Success rate of using the Clustered CNP Task Allocation with Frustration Index

method across cities of all sizes using a varying number of robots.
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Looking deeper at the results, unique trends can be uncovered with regards to the performance of

the Clustered CNP Task Allocation method on cities of different scales. Figures x-x+3 illustrate

these results.

Figure 20: Success rate of using the Clustered CNP Task Allocation with Frustration Index

method across Large cities using a varying number of robots.

Figure 21: Success rate of using the Clustered CNP Task Allocation with Frustration Index

method across Medium cities using a varying number of robots.
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Figure 22: Success rate of using the Clustered CNP Task Allocation with Frustration Index

method across Small cities using a varying number of robots.

By inspecting the graphs above, it can be clearly seen that the maximal successful performance

peaks of the method have been decreased. However, it can be seen that the frustration index was

able to successfully create an expected impact in the results as it has now smoothed out the

variation in success rate between varying numbers of robots used for search. While examining

graph x, we can notice that there is a decreasing linear relationship between the number of robots

used and the success rate of the search.

Additionally, further inspection reveals a similar trend for all three urban center

categories. The frustration index has been shown to successfully smooth out the performance of

the Clustered CNP Task Allocation described earlier to be more reliable. This increased

reliability creates a defined window for the search to be augmented with human search agents

and consequently increase the already competitive success rate of the proposed search method.

Figure 23 below shows the performance results of the clustered CNP Task Allocation algorithm

with Frustration Index across all 9 cities.
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Figure 23: Clustered CNP Task Allocation + Frustration Index Success Rate across all cities

with varying number of robots

Limitations
While the proposed solution offers a comprehensive approach to locating a lost person in an

urban environment, it comes with several limitations. These limitations may impact the

efficiency and reliability of the multi-robot system (MRS) and should be considered when

implementing this strategy.

1. Centralized Coordination

The coordination of robot agents relies on a central node for communication and

decision-making. This centralized approach creates a single point of failure. If the central node

experiences disruptions due to technical issues, network connectivity problems, or cyberattacks,
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the entire coordination system could be compromised. This risk is heightened in complex urban

environments where communication infrastructure might not always be reliable.

2. Weather Conditions

Unpredictable weather can significantly affect the operation of Unmanned Aerial Vehicles

(UAVs) within the MRS. Inclement weather such as heavy rain, strong winds, or thunderstorms

can disrupt UAV flights, grounding them and reducing the overall efficiency of the search effort.

This limitation poses a challenge, especially in regions with volatile weather patterns.

Ground-based robots might also face limitations in extreme weather, such as flooding or snow.

3. Resource Constraints

Multi-robot systems require substantial resources, including power, maintenance, and data

processing capabilities. Limitations in these resources can restrict the operation duration and

scope, affecting the ability to conduct extended searches or cover larger areas. Additionally, the

cost of maintaining and operating a MRS might be prohibitive for some organizations or

communities.

4. Ethical and Privacy Considerations

Conducting search and rescue operations in urban environments raises ethical and privacy

concerns, particularly regarding the collection and use of personal data. Ensuring compliance

with privacy regulations, obtaining consent from individuals affected by the search, and

minimizing the intrusion into private spaces are essential considerations that may influence the

implementation of the proposed solution.

By addressing these limitations, the proposed approach can become more robust,

resilient, and adaptable, ultimately increasing the chances of successfully locating lost persons in

urban environments. This holistic approach paves the way for future research and applications in

non-disaster search operations, contributing to safer and more efficient search and rescue efforts.
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Benefits
The proposed solution for locating lost persons in urban environments, utilizing a Multi-Robot

System (MRS) and the Lost Person Model, offers multiple benefits, enhancing search efficiency

and increasing the likelihood of success.

1. Efficiency

The coordination of multiple robots through a centralized system allows for efficient task

distribution and search coverage. This approach reduces overlap and ensures that the robots are

searching in areas with the highest probability of finding the lost person. Moreover, the Lost

Person Model's probabilistic predictions are key to improving efficiency by guiding robots to

focus on key locations, saving time and resources.

2. Scalability

The proposed solution is inherently scalable, allowing for increased search areas or additional

robots without a significant decrease in efficiency. This scalability is particularly useful in large

urban environments where the search may need to cover extensive areas. The Lost Person

Model's flexible data resolution supports this scalability by providing the right level of detail for

different scenarios.

3. Adaptability

The adaptability of the solution is a key advantage. The Lost Person Model uses environmental

factors and human feedback to adjust search patterns, allowing for rapid response to changing

conditions. This adaptability extends to the Multi-Robot System, where human-robot interaction

plays a crucial role in refining the search strategy. The system's ability to incorporate new

information and adjust the search trajectory ensures that it remains effective even as conditions

evolve.

4. Reduced Risk and Safety

The proposed solution minimizes risk by using robots for search operations, reducing the need

for humans to enter potentially dangerous or hard-to-reach areas. This approach enhances safety

for human rescuers while allowing for thorough exploration of the search area. The centralized

communication node further enhances safety by ensuring a coordinated response in case of

emergencies.
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Future Work

The Clustered CNP (Contract Net Protocol) with Frustration Index Task Allocation Algorithm

has shown significant potential in improving search and rescue operations in urban

environments. To build upon these findings, the following next steps are proposed:

Further Refinement of the Frustration Index

The introduction of the frustration index has provided a new dimension for task allocation.

Future research should explore how different configurations of the frustration index impact

search efficiency and success rates. This refinement could involve varying the calculation

method, exploring alternative measures of task distribution, or experimenting with different

boundaries to create a more balanced assignment of tasks.

Exploration of Advanced Clustering Techniques

The current approach uses the K-Nearest Neighbors method to create clusters. Further research

could investigate alternative clustering techniques to enhance the accuracy and flexibility of the

clustering process. Techniques such as hierarchical clustering or density-based clustering could

offer improved adaptability to different environments and search scenarios.

Development of Adaptive Search Strategies

The adaptability of the Clustered CNP Task Allocation Algorithm is a key strength. To further

enhance this adaptability, research should focus on developing dynamic search strategies that can

adjust to evolving conditions in real-time. This could involve incorporating machine learning

techniques to predict lost person's movements based on previous searches or using real-time data

to update search patterns.

Investigation of Scalability and Resource Optimization

Given the scalability of the Clustered CNP approach, future research should explore how to

optimize resource allocation as the system scales. This investigation could involve analyzing the

computational and communication overhead associated with larger robot fleets, identifying

optimal numbers of robots for various search scenarios, and determining the most effective

strategies for parallel task allocation.
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Evaluation of Ethical and Privacy Considerations

As search and rescue operations become more advanced, ethical and privacy considerations must

be addressed. Future research should examine the ethical implications of using robotic agents in

urban environments, particularly in terms of data collection, surveillance, and privacy. This

evaluation should result in guidelines to ensure compliance with ethical standards and privacy

regulations.

Conclusion
This work has explored the Clustered CNP (Contract Net Protocol) Task Allocation Algorithm as

a means to optimize search and rescue operations in urban environments. Through extensive

simulations and data analysis, several major conclusions were drawn from this research:

Improved Search Efficiency

The Clustered CNP approach, with its area-based task allocation, significantly improves the

efficiency of search operations. By allowing robots to search over broader areas, the success rate

in locating a lost person has been substantially increased compared to previous methods like the

Closest Distance approach.

Enhanced Task Coordination

The introduction of clusters allows for better coordination among search agents. By clustering

tasks and assigning robots to search entire areas instead of specific coordinates, the algorithm

reduces redundancy and facilitates more complex search trajectories. This coordination ensures

that robots cover more ground in a shorter time, increasing the likelihood of successful

outcomes.

Versatility and Scalability

The Clustered CNP Task Allocation Algorithm demonstrated versatility in adapting to different

urban environments. The ability to scale with varying numbers of robots and search over large or

small areas adds to the algorithm's flexibility. This scalability is crucial for managing complex

search operations in diverse urban settings.
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Introduction of the Frustration Index

The addition of a frustration index in the Clustered CNP Task Allocation with Frustration Index

approach offers a novel mechanism for task allocation. This variable, based on the distance from

the map's mean to the boundary, provides a dynamic way to assign tasks to robots, helping to

minimize commuting time and optimize search efforts. This method also showed a smoother

success rate, reducing fluctuations and providing more consistent results across various city

scales.

The significance of this research lies in its potential to transform search and rescue

operations in urban environments. By introducing a more efficient, coordinated, and scalable task

allocation algorithm, this work contributes to the field's broader goal of enhancing search

outcomes while minimizing resource use. The approach's adaptability and robustness to failures

further underscore its value, suggesting a promising pathway for future search and rescue

methodologies.

Moreover, the insights gained from this work offer valuable guidance for real-world

applications, particularly in non-disaster scenarios where locating lost persons is critical. The

conclusions drawn from this research can inform future studies, promoting a deeper

understanding of how Multi-Robot Systems (MRS) can be optimized to support search

operations effectively. With the outlined next steps, further exploration and refinement are

possible, contributing to a more reliable, ethical, and efficient approach to search and rescue in

urban contexts.
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Appendix A

The code for this research can be found at the following link:

https://github.com/haighcam/masc/tree/market_tasks

The GitHub Repository is part of the Intellectual Property of the Computer Integrated

Manufacturing Lab (CIMLab) at the University of Toronto under the Supervision of Professor

Benhabib. All requests to access this repository can be forwarded to the CIMLab.
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